首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although Giardia lamblia trophozoites are unable to carry out de novo phospholipid synthesis, they can assemble complex glycophospholipids from simple lipids and fatty acids acquired from the host. Previously, we have reported that G. lamblia synthesizes GP49, an invariant surface antigen with a glycosylphosphatidylinositol (GPI) anchor. It is therefore possible that myo-inositol (Ins), phosphatidylinositol (PI) and other GPI precursors are obtained from the dietary products of the human small intestine, where the trophozoites colonize. In this report, we have investigated the role of exogenous Ins and PI on GPI anchor synthesis by G. lamblia. The results demonstrate that [3H]Ins and PI internalized by trophozoites, metabolically transformed into GlcN(acyl)-PI and downstream GPI molecules. Further investigations suggest that G. lamblia expresses cytidine monophosphate (CMP)-dependent (Mg2+-stimulated) and independent (Mn2+-stimulated) inositol headgroup exchange enzymes, which are responsible for exchanging free Ins with cellular PI. We observed that 3-deoxy-3-fluoro-D-myo-inositol (3-F-Ins) and 1-deoxy-1-F-scyllo-Ins (1-F-scyllo-Ins), which are considered potent inhibitors of Mn2+-stimulated headgroup exchange enzyme, inhibited the incorporation of [3H]Ins into PI and GPI molecules significantly, suggesting that CMP-independent (Mn2+-stimulated) exchange enzyme may be important for these reactions. However, 3-F-Ins and 1-F-scyllo-Ins were not effective in blocking the incorporation of exogenously supplied [3H]PI into GPI glycolipids. Thus, it can be concluded that G. lamblia can use exogenously supplied [3H]PI and [3H]Ins to synthesize GPI glycolipids of GP49; while PI is directly incorporated into GPI molecules, free Ins is first converted into PI by headgroup exchange enzymes, and this newly formed PI participates in GPI anchor synthesis.  相似文献   

2.
Acetate supplementation in rats increases plasma acetate and brain acetyl-CoA levels. Although acetate is used as a marker to study glial energy metabolism, the effect that acetate supplementation has on normal brain energy stores has not been quantified. To determine the effect(s) that an increase in acetyl-CoA levels has on brain energy metabolism, we measured brain nucleotide, phosphagen and glycogen levels, and quantified cardiolipin content and mitochondrial number in rats subjected to acetate supplementation. Acetate supplementation was induced with glyceryl triacetate (GTA) by oral gavage (6 g/kg body weight). Rats used for biochemical analysis were euthanized using head-focused microwave irradiation at 2, and 4 h following treatment to immediately stop metabolism. We found that acetate did not alter brain ATP, ADP, NAD, GTP levels, or the energy charge ratio [ECR, (ATP + ½ ADP)/(ATP + ADP + AMP)] when compared to controls. However, after 4 h of treatment brain phosphocreatine levels were significantly elevated with a concomitant reduction in AMP levels with no change in glycogen levels. In parallel studies where rats were treated with GTA for 28 days, we found that acetate did not alter brain glycogen and mitochondrial biogenesis as determined by measuring brain cardiolipin content, the fatty acid composition of cardiolipin and using quantitative ultra-structural analysis to determine mitochondrial density/unit area of cytoplasm in hippocampal CA3 neurons. Collectively, these data suggest that an increase in brain acetyl-CoA levels by acetate supplementation does increase brain energy stores however it has no effect on brain glycogen and neuronal mitochondrial biogenesis.  相似文献   

3.
4.
In Eukarya, phosphatidylinositol (PI) is biosynthesized from CDP-diacylglycerol (CDP-DAG) and inositol. In Archaea and Bacteria, on the other hand, we found a novel inositol phospholipid biosynthetic pathway. The precursors, inositol 1-phosphate, CDP-archaeol (CDP-ArOH), and CDP-DAG, form archaetidylinositol phosphate (AIP) and phosphatidylinositol phosphate (PIP) as intermediates. These intermediates are dephosphorylated to synthesize archaetidylinositol (AI) and PI. To date, the activities of the key enzymes (AIP synthase, PIP synthase) have been confirmed in only three genera (two archaeal genera, Methanothermobacter and Pyrococcus, and one bacterial genus, Mycobacterium). In the present study, we demonstrated that this novel biosynthetic pathway is universal in both Archaea and Bacteria, which contain inositol phospholipid, and elucidate the specificity of PIP synthase and AIP synthase for lipid substrates. PIP and AIP synthase activity were confirmed in all recombinant cells transformed with the respective gene constructs for four bacterial species (Streptomyces avermitilis, Propionibacterium acnes, Corynebacterium glutamicum, and Rhodococcus equi) and two archaeal species (Aeropyrum pernix and Sulfolobus solfataricus). Inositol was not incorporated. CDP-ArOH was used as the substrate for PIP synthase in Bacteria, and CDP-DAG was used as the substrate for AIP synthase in Archaea, despite their fundamentally different structures. PI synthase activity was observed in two eukaryotic species, Saccharomyces cerevisiae and Homo sapiens; however, inositol 1-phosphate was not incorporated. In Eukarya, the only pathway converts free inositol and CDP-DAG directly into PI. Phylogenic analysis of PIP synthase, AIP synthase, and PI synthase revealed that they are closely related enzymes.  相似文献   

5.
Prostaglandin (PG) and thromboxane (TX) biosynthesis in primary neuronal and astroglial cell cultures was studied. Cultures obtained from fetal (15–16 days old) and neonatal rat brain hemispheres were characterized by chemical and immunocytochemical staining techniques as predominantly neurons or mature and immature astrocytes, respectively. Six-day old neuronal cell cultures grown in the presence of cytosine arabinoside (2 μM) from the day 3 onwards were contaminated up to 10% with glioblasts. In astroglial cultures up to 3% of the cells were postively stained with a marker for oligodendroglial cells. Fibroblast contamination was below 1% in both cultures. Prostanoid formation (measured by specific radioimmunoassays) in 6-day old neuronal cell cultures was low (sum of the amount of PGs and TX formed: 1.16 ± 0.17 (ng/mg protein/15 min) as compared to 14-day old cultured astroglial cells: 21.27 ± 2.53 (ng/mg protein/15 min). Also the pattern of prostanoids formed was different in neuronal (PGD2 ? PGF2α > TXB2 ? PGE2) and astroglial cells (PGD2 > TXB2 ? PGF2α ? PGE2 ? 6-ketoPGF1α). Preincubation with arachidonic acid (1 μg/ml) did not affect prostanoid formation in both cultures, whereas it was stimulated 4–6-fold by addition of the calcium ionophore A23187 (1 μM). These results, although found on cultured neuronal and glial cells of different stages of development, support the view that astroglial cells might play a crucial role in brain prostanoid synthesis.  相似文献   

6.
Neuropeptide Y (NPY) has been reported to be a potent anti-inflammatory peptide with ability to directly modulate activity of granulocytes and macrophages. The present study aimed to correlate the effects of NPY in vivo on lipopolysaccharide-induced air-pouch exudates cells and in vitro on peripheral blood leukocytes functions. The role of different Y receptors was examined using NPY-related peptides and antagonists with diverse subtype specificity and selectivity for Y receptors. Y1, Y2 and Y5 receptors were detected on air-pouch exudates cells (flow cytometry) and peripheral blood granulocytes (immunocitochemistry). NPY in vivo reduced inflammatory cells accumulation into the air pouch, and decreased their adherence and phagocytic capacity via Y2/Y5 and Y1/Y2 receptors, respectively. Quite the opposite, NPY in vitro potentiated adhesiveness and phagocytosis of peripheral blood granulocytes and monocytes by activating Y1 receptor. The differences between in vivo and in vitro effects of NPY on rat inflammatory cells functions are mostly due to dipeptidyl peptidase 4 activity. In addition, suppressive effect of NPY in vivo is highly dependent on the local microenvironment, peptide truncation and specific Y receptors interplay.  相似文献   

7.
BACKGROUND AND AIMS: Salvia divinorum produces several closely related neoclerodane diterpenes. The most abundant of these, salvinorin A, is responsible for the psychoactive properties of the plant. To determine where these compounds occur in the plant, various organs, tissues and glandular secretions were chemically analysed. A microscopic survey of the S. divinorum plant was performed to examine the various types of trichomes present and to determine their distribution. METHODS: Chemical analyses were performed using thin layer chromatographic and histochemical techniques. Trichomes were examined using conventional light microscopy and scanning electron microscopy. KEY RESULTS: It was found that neoclerodane diterpenes are secreted as components of a resin that accumulates in peltate glandular trichomes, specifically in the subcuticular space that exists between the trichome head cells and the cuticle that encloses them. Four main types of trichomes were observed: peltate glandular trichomes, short-stalked capitate glandular trichomes, long-stalked capitate glandular trichomes and non-glandular trichomes. Their morphology and distribution is described. Peltate glandular trichomes were only found on the abaxial surfaces of the leaves, stems, rachises, bracts, pedicles and calyces. This was consistent with chemical analyses, which showed the presence of neoclerodane diterpenes in these organs, but not in parts of the plant where peltate glandular trichomes are absent. CONCLUSIONS: Salvinorin A and related compounds are secreted as components of a complex resin that accumulates in the subcuticular space of peltate glandular trichomes.  相似文献   

8.
Spermidine synthase (EC 2.5.1.16) was purified to homogeneity for the cytosol of soybean (Glycine max) axes using ammonium sulfate fractionation and chromatography on DEAE-Sephacel, Sephacryl S-300, ω-aminooctyl-Sepharose and ATPA-Sepharose. The molecular mass of the enzyme estimated by gel filtration and SDS–PAGE is 74 kDa. Cadaverin and 1,6-diaminohexane could not replace putrescine as the aminopropyl acceptor. Kinetic behaviors of the substrate are consistent with a ping pong mechanism. The kinetic mechanism is further supported by direct evidence confirming the presence of an aminopropylated enzyme and identification of product, 5′-deoxy-5′-methylthioadenosine, prior to adding putrescine. The Km values for decarboxylated S-adenosylmethionine and putrescine are 0.43 μM and 32.45 μM, respectively. Optimum pH and temperature for the enzyme reaction are 8.5 and 37°C, respectively. The enzyme activity is inhibited by N-ethylmaleimide and DTNB, but stimulated by Co2+, Cu2+ and Ca2+ significantly, suggesting that these metal ions could be the cellular regulators in polyamine biosynthesis.  相似文献   

9.
A new arrangement of proteins and lipids of stratum corneum (SC) cornified envelope (CE) is proposed. The chemical analysis of CE revealed the presence of free fatty acids (FFA), ceramides (Cer), and important percentages of glutamic acid/glutamine (Glx) and serine (Ser) residues. The molecular structure of these components suggests the existence of covalent links not only between Cer and Glx but also between FFA and Ser. The protein distribution of extracellular surface of CE, i.e., the proteins that could be involved in the bonds with lipids, was studied using post- and pre-embedding immunolabeling electron microscopy. Some loricrin (protein rich in Ser) was detected in the outermost part of the CE protein layer. The external arrangement of some domains of this protein may give rise to form linkages with FFA, yielding further insight into the CE arrangement in which Cer-Glx bonds and FFA-Ser bonds would be involved. Although the importance of fatty acids in the cohesion and barrier function of SC has been widely demonstrated, their role could be associated not only to the presence of these lipids in the intercellular lamellae but also in the CE, in the same way that Cer.  相似文献   

10.
Two phospholipase A2 (PLA2) enzymes (NK-PLA2-A and NK-PLA2-B) were purified from the venom of the monocled cobra Naja kaouthia. The molecular weights of NK-PLA2-A and NK-PLA2-B, as estimated by mass spectrometry, were 13,619 and 13,303 Da respectively. Both phospholipases were highly thermostable, had maximum catalytic activity at basic pH, and showed preferential hydrolysis of phosphatidylcholine. Intravenous injection of either PLA2 up to a dose of 10 mg/kg body weight was non-toxic to mice and did not show neurotoxic symptoms. The N. kaouthia PLA2s displayed anticoagulant and cytotoxic activity, but poor hemolytic activity. Both the PLA2s were more toxic to Sf9 and Tn cells compared to VERO cells. NK-PLA2 exhibited selective lysis of wild-type baculovirus-infected Sf9 cells compared to normal cells. Amino acid modification studies and heating experiments suggest that separate sites in the NK-PLA2 molecules are responsible for their catalytic, anticoagulant and cytotoxic activities.  相似文献   

11.
Glutamate is the most abundant excitatory neurotransmitter in the brain and astrocytes are key players in sustaining glutamate homeostasis. Astrocytes take up the predominant part of glutamate after neurotransmission and metabolism of glutamate is necessary for a continuous efficient removal of glutamate from the synaptic area. Glutamate may either be amidated by glutamine synthetase or oxidatively metabolized in the mitochondria, the latter being at least to some extent initiated by oxidative deamination by glutamate dehydrogenase (GDH). To explore the particular importance of GDH for astrocyte metabolism we have knocked down GDH in cultured cortical astrocytes employing small interfering RNA (siRNA) achieving a reduction of the enzyme activity by approximately 44%. The astrocytes were incubated for 2h in medium containing either 1.0mM [(15)NH(4)(+)] or 100μM [(15)N]glutamate. For those exposed to [(15)N]glutamate an additional 100μM was added after 1h. Metabolic mapping was performed from isotope incorporation measured by mass spectrometry into relevant amino acids of cell extracts and media. The contents of the amino acids were measured by HPLC. The (15)N incorporation from [(15)NH(4)(+)] into glutamate, aspartate and alanine was decreased in astrocytes exhibiting reduced GDH activity. However, the reduced GDH activity had no effect on the cellular contents of these amino acids. This supports existing in vivo and in vitro studies that GDH is predominantly working in the direction of oxidative deamination and not reductive amination. In contrast, when exposing the astrocytes to [(15)N]glutamate, the reduced GDH activity led to an increased (15)N incorporation into glutamate, aspartate and alanine and a large increase in the content of glutamate and aspartate. Surprisingly, this accumulation of glutamate and net-synthesis of aspartate were not reflected in any alterations in either the glutamine content or labeling, but a slight increase in mono labeling of glutamine in the medium. We suggest that this extensive net-synthesis of aspartate due to lack of GDH activity is occurring via the concerted action of AAT and the part of TCA cycle operating from α-ketoglutarate to oxaloacetate, i.e. the truncated TCA cycle.  相似文献   

12.
LNX1 and LNX2 are E3 ubiquitin ligases that can interact with Numb — a key regulator of neurogenesis and neuronal differentiation. LNX1 can target Numb for proteasomal degradation, and Lnx mRNAs are prominently expressed in the nervous system, suggesting that LNX proteins play a role in neural development. This hypothesis remains unproven, however, largely because LNX proteins are present at very low levels in vivo. Here, we demonstrate expression of both LNX1 and LNX2 proteins in the brain for the first time. We clarify the cell-type specific expression of LNX isoforms in both the CNS and PNS, and identify a novel LNX1 isoform. Using luciferase reporter assays, we show that the 5′ untranslated region of the Lnx1_variant 2 mRNA, that generates the LNX1p70 isoform, strongly suppresses protein production. This effect is mediated in part by the presence of upstream open reading frames (uORFs), but also by a sequence element that decreases both mRNA levels and translational efficiency. By contrast, uORFs do not negatively regulate LNX1p80 or LNX2 expression. Instead, we find some evidence that protein turnover via proteasomal degradation may influence LNX1p80 levels in cells. These observations provide plausible explanations for the low levels of LNX1 proteins detected in vivo.  相似文献   

13.
The plant Andrographis paniculata found throughout Southeast Asia contains Andrographolide 1, a diterpenoid lactone, which has antitumour activities against in vitro and in vivo breast cancer models. In the present study, we report on the synthesis of andrographolide derivatives, 3,19-isopropylideneandrographolide (2), 14-acetyl-3,19-isopropylideneandrographolide (3) and 14-acetylandrographolide (4), and their in vitro antitumour activities against a 2-cell line panel consisting of MCF-7 (breast cancer cell line) and HCT-116 (colon cancer cell line). Compounds 2 and 4 were also screened at the US National Cancer Institute (NCI) for their activities against a panel of 60 human cancer cell lines derived from nine cancer types. Compound 2 was found to be selective towards leukaemia and colon cancer cells, and compound 4 was selective towards leukaemia, ovarian and renal cancer cells at all the dose-response parameters. Compounds 2 and 4 showed non-specific phase of the cell cycle arrest in MCF-7 cells treated at different intervals with different concentrations. NCI's COMPARE and SOM mechanistic analyses indicated that the anticancer activities of these new class of compounds were not similar to that of standard anticancer agents, suggesting novel mechanism(s) of action.  相似文献   

14.
The conversion of sphingomyelin (SM) to a ceramide (Cer) by acid sphingomyelinase (aSMase) is an important event in skin barrier development. A deficiency in aSMase in diseases such as Niemann–Pick disease and atopic dermatitis coincides with impaired skin barrier recovery after disruption. We studied how an increased SM/Cer ratio influences the barrier function and microstructure of model stratum corneum (SC) lipid membranes. In the membranes composed of isolated human SC Cer (hCer)/cholesterol/free fatty acids/cholesteryl sulfate, partial or full replacement of hCer by SM increased water loss. Partial replacement of 25% and 50% of hCer by SM also increased the membrane permeability to theophylline and alternating electric current, while a higher SM content either did not alter or even decreased the membrane permeability. In contrast, in a simple membrane model with only one type of Cer (nonhydroxyacyl sphingosine, CerNS), an increased SM/Cer ratio provided a similar or better barrier against the permeation of various markers. X-ray powder diffraction revealed that the replacement of hCer by SM interferes with the formation of the long periodicity lamellar phase with a repeat distance of d = 12.7 nm. Our results suggest that SM-to-Cer processing in the human epidermis is essential for preventing excessive water loss, while the permeability barrier to exogenous compounds is less sensitive to the presence of sphingomyelin.  相似文献   

15.
16.
Seven monoclonal antibodies to low-density lipoprotein were studied by the ELISA for their reactivity with LDL or VLDL. Cotitration experiments showed that five of them are addressed to different antigenic epitopes. Two of the monoclonal antibodies were temperature independent whereas the others had a decreased binding activity at 37 degrees C compared to that obtained at 25 degrees C or 4 degrees C, suggesting the presence of antibodies directed to sequence or conformation epitopes, respectively. All antibodies reacted with both LDL and VLDL; four of them had a higher affinity for LDL and two others for VLDL. Immunoprecipitation of LDL and/or VLDL was observed upon immunodiffusion with certain pairs of antibodies. This may allow the use of pairs of monoclonal antibodies to LDL for the quantitative determination of apolipoprotein B in serum LDL and VLDL.  相似文献   

17.
Endoglin is a TGF-β co-receptor expressed in endothelial cells, where it plays a crucial role in angiogenesis, cardiovascular development and vascular remodeling. In humans, mutations in the endoglin gene give rise to Hereditary Hemorrhagic Telangiectasia type 1 (HHT1), an autosomal dominant disorder associated with vascular lesions in skin, mucosa and internal organs. So far, endoglin cDNA has been sequenced in several species from mammals, amphibians and birds. While in mammals the characterization of endoglin protein expression and function is well documented, little is known about the protein homologue in birds. In silico analysis by multiple sequences alignment showed a low homology score of 30-33 between the full length chicken endoglin protein and several mammalian homologues. However, a high homology score (80-85) was observed with the cytoplasmic and transmembrane regions and the overall structure of the zona pellucida (ZP) and orphan domains of the extracellular region appear to be conserved. Transient expression of chicken endoglin allowed the identification of a 180-kDa disulfide linked homodimer similar to the mammalian homologues. To further characterize its tissue expression, the novel specific monoclonal antibody (mAb) 7H5A8 was generated against chicken endoglin transfectant cells. The mAb 7H5A8 specifically recognized chicken endoglin by western blot, immunoprecipitation, immunofluorescence flow cytometry as well as immunofluorescence microscopy assays and displayed a positive staining of the endothelium in veins and arteries from frozen tissue sections of lung and bursa of Fabricius. These results may help to further understand the endoglin expression in vertebrates.  相似文献   

18.
Octreotide is a somatostatin (SST) analogue currently used in the treatment of neuroendocrine tumors (NETs) with high binding affinity for the somatostatin receptor-2 (SSTR2) that is also overexpressed in non-small cell lung cancer cell (NSCLC). Alpha-particle-emitting astatine-211 (211At) is a promising radionuclide with appropriate physical and chemical properties for use in targeted anticancer therapies. To obtain an additional pharmacological agent for the treatment of NSCLC, we present the first investigation of the possible use of 211At-labeled octreotide as a potential alpha-radionuclide therapeutic agent for NSCLC treatment. 211At-SPC-octreotide exhibited observable higher uptake in lung, spleen, stomach and intestines than in other tissues. Through histological examination, 211At-SPC-octreotide demonstrated much more lethal effect than control groups (PBS, octreotide and free 211At). These promising preclinical results suggested that 211At labeled octreotide deserved to be further developed as a new anticancer agent for NSCLC.  相似文献   

19.
After incubation with [1-14C]-arachidonic acid, washed platelets from selenium deficient rats produced a sevenfold greater amount of 12-hydroperoxytetraenoic acid than platelets from control animals. When stimulated with either arachidonic acid or t-butyl-hydroperoxide, antimycin-A1 treated platelets from the deficient rats also converted markedly lower amounts of [1-14C]-glucose to [14C]-CO2 than platelets from control rats. These results indicate a significant role for platelet selenium-dependent glutathione peroxidase in the enzymatic reduction of platelet-produced hydroperoxides.  相似文献   

20.
In this study, one of Doublesex genes from the common freshwater cladoceran Daphnia carinata, designated DapcaDsx1, was cloned using primers based on homologous sequences and rapid amplification of cDNA ends (RACE). qPCR was employed to quantify differences in DapcaDsx1 expression between the different sexual phases, with expression levels being higher in sexual females. The role of DapcaDsx1 in the reproductive transformation was further investigated in parthenogenetic-phase females and sexual-phase females using whole-mount in situ hybridization. This cellular localization study showed specific expression of DapcaDsx1 in the thoracic segments, second antenna and part of the ventral carapace. Higher expression levels were exhibited in sexual females compared to parthenogenetic females. This suggests that the DapcaDsx1 gene plays significant roles in switching modes of reproduction and during sexual differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号