首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cilia are highly conserved organelles that have diverse motility and sensory functions. Recent discoveries have revealed that cilia also have crucial roles in cell signaling pathways and in maintaining cellular homeostasis. As such, defects in cilia formation or function have profound effects on the development of body pattern and the physiology of multiple organ systems. By categorizing syndromes that are due to cilia dysfunction in humans and from studies in vertebrate model organisms, molecular pathways that intersect with cilia formation and function have come to light. Here, we summarize an emerging view that in order to understand some complex developmental pathways and disease etiologies, one must consider the molecular functions performed by cilia.  相似文献   

3.
The dynamic behavior of epithelial cell sheets plays a central role during numerous developmental processes. Genetic and imaging studies of epithelial morphogenesis in a wide range of organisms have led to increasingly detailed mechanisms of cell sheet dynamics. Computational models offer a useful means by which to investigate and test these mechanisms, and have played a key role in the study of cell-cell interactions. A variety of modeling approaches can be used to simulate the balance of forces within an epithelial sheet. Vertex models are a class of such models that consider cells as individual objects, approximated by two-dimensional polygons representing cellular interfaces, in which each vertex moves in response to forces due to growth, interfacial tension, and pressure within each cell. Vertex models are used to study cellular processes within epithelia, including cell motility, adhesion, mitosis, and delamination. This review summarizes how vertex models have been used to provide insight into developmental processes and highlights current challenges in this area, including progressing these models from two to three dimensions and developing new tools for model validation.  相似文献   

4.
The dynamic behavior of epithelial cell sheets plays a central role during numerous developmental processes. Genetic and imaging studies of epithelial morphogenesis in a wide range of organisms have led to increasingly detailed mechanisms of cell sheet dynamics. Computational models offer a useful means by which to investigate and test these mechanisms, and have played a key role in the study of cell-cell interactions. A variety of modeling approaches can be used to simulate the balance of forces within an epithelial sheet. Vertex models are a class of such models that consider cells as individual objects, approximated by two-dimensional polygons representing cellular interfaces, in which each vertex moves in response to forces due to growth, interfacial tension, and pressure within each cell. Vertex models are used to study cellular processes within epithelia, including cell motility, adhesion, mitosis, and delamination. This review summarizes how vertex models have been used to provide insight into developmental processes and highlights current challenges in this area, including progressing these models from two to three dimensions and developing new tools for model validation.  相似文献   

5.
Heterotrophic organisms rely on the ingestion of organic molecules or nutrients from the environment to sustain energy and biomass production. Non-motile, unicellular organisms have a limited ability to store nutrients or to take evasive action, and are therefore most directly dependent on the availability of nutrients in their immediate surrounding. Such organisms have evolved numerous developmental options in order to adapt to and to survive the permanently changing nutritional status of the environment. The phenotypical, physiological and molecular nature of nutrient-induced cellular adaptations has been most extensively studied in the yeast Saccharomyces cerevisiae. These studies have revealed a network of sensing mechanisms and of signalling pathways that generate and transmit the information on the nutritional status of the environment to the cellular machinery that implements specific developmental programmes. This review integrates our current knowledge on nutrient sensing and signalling in S. cerevisiae, and suggests how an integrated signalling network may lead to the establishment of a specific developmental programme, namely pseudohyphal differentiation and invasive growth.  相似文献   

6.
Model organisms are central to contemporary biology and studies of embryogenesis in particular. Biologists utilize only a small number of species to experimentally elucidate the phenomena and mechanisms of development. Critics have questioned whether these experimental models are good representatives of their targets because of the inherent biases involved in their selection (e.g., rapid development and short generation time). A standard response is that the manipulative molecular techniques available for experimental analysis mitigate, if not counterbalance, this concern. But the most powerful investigative techniques and molecular methods are applicable to single-celled organisms (‘microbes’). Why not use unicellular rather than multicellular model organisms, which are the standard for developmental biology? To claim that microbes are not good representatives takes us back to the original criticism leveled against model organisms. Using empirical case studies of microbes modeling ontogeny, we break out of this circle of reasoning by showing: (a) that the criterion of representation is more complex than earlier discussions have emphasized; and, (b) that different aspects of manipulability are comparable in importance to representation when deciding if a model organism is a good model. These aspects of manipulability harbor the prospect of enhancing representation. The result is a better understanding of how developmental biologists conceptualize research using experimental models and suggestions for underappreciated avenues of inquiry using microbes. More generally, it demonstrates how the practical aspects of experimental biology must be scrutinized in order to understand the associated scientific reasoning.  相似文献   

7.
《Biophysical journal》2021,120(19):4193-4201
Rapid advance of experimental techniques provides an unprecedented in-depth view into complex developmental processes. Still, little is known on how the complexity of multicellular organisms evolved by elaborating developmental programs and inventing new cell types. A hurdle to understanding developmental evolution is the difficulty of even describing the intertwined network of spatiotemporal processes underlying the development of complex multicellular organisms. Nonetheless, an overview of developmental trajectories can be obtained from cell type lineage maps. Here, we propose that these lineage maps can also reveal how developmental programs evolve: the modes of evolving new cell types in an organism should be visible in its developmental trajectories and therefore in the geometry of its cell type lineage map. This idea is demonstrated using a parsimonious generative model of developmental programs, which allows us to reliably survey the universe of all possible programs and examine their topological features. We find that, contrary to belief, tree-like lineage maps are rare, and lineage maps of complex multicellular organisms are likely to be directed acyclic graphs in which multiple developmental routes can converge on the same cell type. Although cell type evolution prescribes what developmental programs come into existence, natural selection prunes those programs that produce low-functioning organisms. Our model indicates that additionally, lineage map topologies are correlated with such a functional property: the ability of organisms to regenerate.  相似文献   

8.
Rac GTPases and their effectors control cellular morphogenesis in a wide range of developmental contexts by regulating the structure and dynamics of the actin cytoskeleton. Although much is known about the biochemistry of Racs and Rac regulators, less is known about how Racs control cellular morphogenesis, including axon development, in vivo. Recent loss-of-function genetic studies using model organisms have shown that Racs and their effectors are required for multiple aspects of axon development, including axon outgrowth, axon guidance and axon branching. Interestingly, these studies have also revealed that Rac activity is required to prune spurious axons and branches. Analyses of Racs and their upstream and downstream effectors suggest that Rac signaling is complex. Different neurons utilize distinct combinations of upstream Rac regulators during axon development, possibly reflecting responses to different axon path-finding signals, and Racs use distinct downstream effectors to mediate different aspects of axon development, possibly reflecting differential regulation of the lamellipodial and filopodial growth-cone actin-cytoskeleton domains underlying axon developmental events.  相似文献   

9.
Freshwater planarians were a classic model for studying the problems of development and regeneration. However, as attention shifted towards animals with more rigid developmental processes, the planarians, with their notoriously plastic ontogeny, declined in significance as a model system. This trend was exacerbated with the introduction of genetic and molecular approaches, which did not work well in planarians. More recently, the heightened interest in stem-cell biology, along with the successful application of molecular, cellular and genomic approaches in planarians, is re-establishing these fascinating organisms as models for studying regeneration and developmental plasticity.  相似文献   

10.
Model organisms became an indispensable part of experimental systems in molecular developmental and cell biology, constructed to investigate physiological and pathological processes. They are thought to play a crucial role for the elucidation of gene function, complementing the sequencing of the genomes of humans and other organisms. Accordingly, historians and philosophers paid considerable attention to various issues concerning this aspect of experimental biology. With respect to the representational features of model organisms, that is, their status as models, the main focus was on generalization of phenomena investigated in such experimental systems. Model organisms have been said to be models for other organisms or a higher taxon. This, however, presupposes a representation of the phenomenon in question. I will argue that prior to generalization, model organisms allow researchers to built generative material models of phenomena - structures, processes or the mechanisms that explain them - through their integration in experimental set-ups that carve out the phenomena from the whole organism and thus represent them. I will use the history of zebrafish biology to show how model organism systems, from around 1970 on, were developed to construct material models of molecular mechanisms explaining developmental or physiological processes.  相似文献   

11.
Developmental system drift and flexibility in evolutionary trajectories   总被引:9,自引:0,他引:9  
SUMMARY The comparative analysis of homologous characters is a staple of evolutionary developmental biology and often involves extrapolating from experimental data in model organisms to infer developmental events in non-model organisms. In order to determine the general importance of data obtained in model organisms, it is critical to know how often and to what degree similar phenotypes expressed in different taxa are formed by divergent developmental processes. Both comparative studies of distantly related species and genetic analysis of closely related species indicate that many characters known to be homologous between taxa have diverged in their morphogenetic or gene regulatory underpinnings. This process, which we call "developmental system drift" (DSD), is apparently ubiquitous and has significant implications for the flexibility of developmental evolution of both conserved and evolving characters. Current data on the population genetics and molecular mechanisms of DSD illustrate how the details of developmental processes are constantly changing within evolutionary lineages, indicating that developmental systems may possess a great deal of plasticity in their responses to natural selection.  相似文献   

12.
Biological tubes are a prevalent structural design across living organisms. They provide essential functions during the development and adult life of an organism. Increasing progress has been made recently in delineating the cellular and molecular mechanisms underlying tubulogenesis. This review aims to introduce ascidian notochord morphogenesis as an interesting model system to study the cell biology of tube formation, to a wider cell and developmental biology community. We present fundamental morphological and cellular events involved in notochord morphogenesis, compare and contrast them with other more established tubulogenesis model systems, and point out some unique features, including bipolarity of the notochord cells, and using cell shape changes and cell rearrangement to connect lumens. We highlight some initial findings in the molecular mechanisms of notochord morphogenesis. Based on these findings, we present intriguing problems and put forth hypotheses that can be addressed in future studies.  相似文献   

13.
Konopka G  Geschwind DH 《Neuron》2010,68(2):231-244
The evolution of the human brain has resulted in numerous specialized features including higher cognitive processes such as language. Knowledge of whole-genome sequence and structural variation via high-throughput sequencing technology provides an unprecedented opportunity to view human evolution at high resolution. However, phenotype discovery is a critical component of these endeavors and the use of nontraditional model organisms will also be critical for piecing together a complete picture. Ultimately, the union of developmental studies of the brain with studies of unique phenotypes in a myriad of species will result in a more thorough model of the groundwork the human brain was built upon. Furthermore, these integrative approaches should provide important insights into human diseases.  相似文献   

14.
Tremendous progress has been achieved in developmental, cellular and molecular immunology in the past 20 years, largely due to studies using the mouse as a model system and the arrival of molecular genetics. Immunology is now faced with a difficult challenge. What are the functions of the individual cells and molecules in achieving immunity to infection? Renewed interest in animal models of disease has provided considerable insight in this area, but such models of infection suffer from the inherent limitation of being experimental. In humans, the complex host-environment interaction occurs in natural, as opposed to experimental, conditions. The human model is therefore an indispensable complement to animal models, as it allows an observational genetic dissection of immunity to infection.  相似文献   

15.
Evo-devo is a young disciplin, which aims to explain the morphological evolution of organisms through developmental mechanisms and genes networks. A major question within this discipline is the origin of vertebrates. It seems now admitted that vertebrates derive from an invertebrate chordate ancestor. Several models among living chordate representatives are used today to answer this question. The small world of evo-evo interested in the emergence of vertebrates is ebullient about the advent of several totally sequenced genomes allowing comparative analyses to become evermore reliable. Furthermore "non classical" models are developed which can be submitted to refined developmental analysis. One of these is amphioxus (genus Branchyostoma), "a peaceful anchory fillet to illuminate chordate evolution" (Garcia-Fernandez, 2006a, b). The features of this model are described in this review.  相似文献   

16.
It is quite common in studies of life-history plasticity to find a negative relationship between the age at which various life-history transitions occur and the growth conditions under which individuals develop. In particular, high growth typically results in earlier transitions, often at a larger size. Here, we use a relatively general optimization model for age and size at life-history transitions to argue that current life-history theory cannot adequately explain these results. Specifically, most such theory requires key assumptions that are unlikely to be generally met. This suggests that some important component of the biology of many organisms must be missing from many of the models in life-history theory. We suggest that this missing component might be the phenomenon of developmental thresholds. There are at least two different types of developmental thresholds possible, and we incorporate these into our general optimality model to demonstrate how they can cause a negative relationship between growth conditions and age at a transition. If developmental thresholds are common throughout taxa, then this might explain the empirical results. Our model formulation and analysis also formalizes the popular Wilbur-Collins hypothesis for age and size at metamorphosis in amphibians. The results demonstrate that optimal combinations of age and size, and the slope of the reaction norm connecting them, depend on the existence and type of threshold assumed. Our results also provide an evolutionary framework that can be used to view the data and many of the proximate submodels derived from the Wilbur-Collins hypothesis.  相似文献   

17.
In this paper, we present a model for pattern formation in developing organisms that is based on cellular oscillators (CO). An oscillatory process within cells serves as a developmental clock whose period is tightly regulated by cell autonomous or non-autonomous mechanisms. A spatial pattern is generated as a result of an initial temporal ordering of the cell oscillators freezing into spatial order as the clocks slow down and stop at different times or phases in their cycles. We apply a CO model to vertebrate somitogenesis and show that we can reproduce the dynamics of periodic gene expression patterns observed in the pre-somitic mesoderm. We also show how varying somite lengths can be generated with the CO model. We then discuss the model in view of experimental evidence and its relevance to other instances of biological pattern formation, showing its versatility as a pattern generator.  相似文献   

18.
miRNAs (microRNAs) were first discovered as critical regulators of developmental timing events in Caenorhabditis elegans. Subsequent studies have shown that miRNAs and cellular factors necessary for miRNA biogenesis are conserved in many organisms, suggesting the importance of miRNAs during developmental processes. Indeed, mutations in the miRNA-processing pathway induce pleiotropic defects in development, which accompany perturbation of correct expression of target genes. However, control of gene expression in development is not the only function of miRNAs. Recent work has provided new insights into the role of miRNAs in various biological events, including aging and cancer. C. elegans continues to be helpful in facilitating a further understanding of miRNA function in human diseases.  相似文献   

19.
miRNAs (microRNAs) were first discovered as critical regulators of developmental timing events in Caenorhabditis elegans. Subsequent studies have shown that miRNAs and cellular factors necessary for miRNA biogenesis are conserved in many organisms, suggesting the importance of miRNAs during developmental processes. Indeed, mutations in the miRNA-processing pathway induce pleiotropic defects in development, which accompany perturbation of correct expression of target genes. However, control of gene expression in development is not the only function of miRNAs. Recent work has provided new insights into the role of miRNAs in various biological events, including aging and cancer. C. elegans continues to be helpful in facilitating a further understanding of miRNA function in human diseases.  相似文献   

20.
Temperature is the most significant factor controlling developmental timing of most temperate poikilotherms. In the face of climate change, a crucial question is how will poikilothermic organisms evolve when faced with changing thermal environments? In this paper, we integrate models for developmental timing and quantitative genetics. A simple model for determining developmental milestones (emergence times, egg hatch) is introduced, and the general quantitative genetic recursion for the mean value of developmental parameters presented. Evolutionary steps proportional to the difference between current median parameters and parameters currently selected for depend on the fitness, which is assumed to depend on emergence density. Asymptotic states of the joint model are determined, which turn out to be neutrally stable (marginal) fixed points in the developmental model by itself, and an associated stable emergence distribution is also described. An asymptotic convergence analysis is presented for idealized circumstances, indicating basic stability criteria. Numerical studies show that the stability analysis is quite conservative, with basins of attraction to the asymptotic states that are much larger than expected. It is shown that frequency-dependent selection drives oscillatory dynamics and that the asymptotic states balance the asymmetry of the emergence distribution and the fitness function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号