首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphospaces—representations of phenotypic characteristics—are often populated unevenly, leaving large parts unoccupied. Such patterns are typically ascribed to contingency, or else to natural selection disfavoring certain parts of the morphospace. The extent to which developmental bias, the tendency of certain phenotypes to preferentially appear as potential variation, also explains these patterns is hotly debated. Here we demonstrate quantitatively that developmental bias is the primary explanation for the occupation of the morphospace of RNA secondary structure (SS) shapes. Upon random mutations, some RNA SS shapes (the frequent ones) are much more likely to appear than others. By using the RNAshapes method to define coarse-grained SS classes, we can directly compare the frequencies that noncoding RNA SS shapes appear in the RNAcentral database to frequencies obtained upon a random sampling of sequences. We show that: 1) only the most frequent structures appear in nature; the vast majority of possible structures in the morphospace have not yet been explored; 2) remarkably small numbers of random sequences are needed to produce all the RNA SS shapes found in nature so far; and 3) perhaps most surprisingly, the natural frequencies are accurately predicted, over several orders of magnitude in variation, by the likelihood that structures appear upon a uniform random sampling of sequences. The ultimate cause of these patterns is not natural selection, but rather a strong phenotype bias in the RNA genotype–phenotype map, a type of developmental bias or “findability constraint,” which limits evolutionary dynamics to a hugely reduced subset of structures that are easy to “find.”  相似文献   

2.
Brain pericytes regulate a variety of functions, such as microcirculation, angiogenesis, and the blood brain barrier in the brain. Recent studies have also shown that they are pluripotent in a manner similar to mesenchymal stem cells. Since, brain pericytes actively control these functions, these cells probably play an important role not only during brain ischemia, but also in the post-stroke period.  相似文献   

3.
A Possible Role for Taurine in Osmoregulation Within the Brain   总被引:16,自引:11,他引:5  
Intracranial microdialysis was used to measure changes in extracellular amino acids within the rat brain during local osmotic alteration of the extracellular microenvironment or during systemic water intoxication. Increased cellular hydration produced by either of these methods was accompanied by a marked increase in extracellular taurine levels without affecting the other amino acids measured. With local osmotic alteration, this increase was osmolarity dependent and reversible. The specificity, sensitivity, and reversibility of the increase in extracellular taurine strongly suggest a functional role in osmoregulation in the brain under normal as well as pathological conditions.  相似文献   

4.
Fyodorov  V. P.  Ushakov  I. B.  Shalnova  G. A. 《Biology Bulletin》2019,46(11):1533-1539
Biology Bulletin - Cerebral effects were studied in experiments on rats exposed to acute γ-radiation of the head at cerebral doses, with previous or subsequent administration of different...  相似文献   

5.
Certain standard properties, including spontaneous curvature, are assumed for the membrane of a bilipid vesicle. Then, if there is a mechanism that causes the membrane area to increase, vesicle cleavage is found to occur.  相似文献   

6.
The interaction of the potassium channel blocker 4-aminopyridine (4-AP) and its analogs with muscarinic acetylcholine receptors was studied in rat brain homogenate. 4-AP displaced specific [3H]quinuclidinyl benzilate [( 3H]QNB) binding in a concentration-dependent fashion. Hill coefficient values decreased with increasing the concentration of [3H]QNB and different analogs of 4-AP demonstrated varying potencies. Scatchard analysis of saturation isotherms of specific [3H]QNB binding showed that low concentrations of 4-AP slightly reduced maximum binding without affecting the equilibrium dissociation constant, whereas higher concentrations reduced maximum binding further and significantly increased the equilibrium dissociation constant. Schild plots of these data resulted in curvilinear functions. The results are discussed in terms of possible allosteric interactions between potassium channels and muscarinic receptor binding sites.  相似文献   

7.
Cancer progression towards metastasis follows a defined sequence of events described as the metastatic cascade. For extravasation and transendothelial migration metastatic cells interact first with endothelial cells. Yet the role of endothelial cells during the process of metastasis formation and extravasation is still unclear, and the interaction between metastatic and endothelial cells during transendothelial migration is poorly understood. Since tumor cells are well known to express TGF-β, and the compact endothelial layer undergoes a series of changes during metastatic extravasation (cell contact disruption, cytoskeletal reorganization, enhanced contractility), we hypothesized that an EndMT may be necessary for metastatic extravasation. We demonstrate that primary cultured rat brain endothelial cells (BEC) undergo EndMT upon TGF-β1 treatment, characterized by the loss of tight and adherens junction proteins, expression of fibronectin, β1-integrin, calponin and α-smooth muscle actin (SMA). B16/F10 cell line conditioned and activated medium (ACM) had similar effects: claudin-5 down-regulation, fibronectin and SMA expression. Inhibition of TGF-β signaling during B16/F10 ACM stimulation using SB-431542 maintained claudin-5 levels and mitigated fibronectin and SMA expression. B16/F10 ACM stimulation of BECs led to phosphorylation of Smad2 and Smad3. SB-431542 prevented SMA up-regulation upon stimulation of BECs with A2058, MCF-7 and MDA-MB231 ACM as well. Moreover, B16/F10 ACM caused a reduction in transendothelial electrical resistance, enhanced the number of melanoma cells adhering to and transmigrating through the endothelial layer, in a TGF-β-dependent manner. These effects were not confined to BECs: HUVECs showed TGF-β-dependent SMA expression when stimulated with breast cancer cell line ACM. Our results indicate that an EndMT may be necessary for metastatic transendothelial migration, and this transition may be one of the potential mechanisms occurring during the complex phenomenon known as metastatic extravasation.  相似文献   

8.
9.
10.
Changing Shapes     
《BMJ (Clinical research ed.)》1960,1(5174):712-713
  相似文献   

11.
Masherov  E. L. 《Biophysics》2019,64(3):448-453
Biophysics - Abstract—A model of electroencephalogram (EEG) generation was proposed to include not only summation of postsynaptic potentials, but also fluctuations in the regulation of a...  相似文献   

12.
13.
Abstract: Agmatine (decarboxylated arginine), an endogenous ligand for imidazoline receptors, has been identified in brain where it is synthesized from arginine by arginine decarboxylase. Here we report a mechanism for the transport of agmatine into rat brain synaptosomes. The uptake of agmatine was energy- and temperature-dependent and saturable with a K m of 18.83 ± 3.31 m M and a V max of 4.78 ± 0.67 nmol/mg of protein/min. Treatment with ouabain (Na+,K+-ATPase inhibitor) or removal of extracellular Na+ did not attenuate the uptake rate. Agmatine transport was not inhibited by amino acids, polyamines, or monoamines, indicating that the uptake is not mediated by any amino acid, polyamine, or monoamine carriers. When we examined the effects of some ion-channel agents on agmatine uptake, only Ca2+-channel blockers inhibited the uptake, whereas a reduction in extracellular Ca2+ increased it. In addition, some imidazoline drugs, such as idazoxan and phentolamine, were strong noncompetitive inhibitors of agmatine uptake. Thus, a selective, Na+-independent uptake system for agmatine exists in brain and may be important in regulating the extracellular concentration of agmatine.  相似文献   

14.
Evolutionary theories are critical for understanding cancer development at the level of species as well as at the level of cells and tissues, and for developing effective therapies. Animals have evolved potent tumor-suppressive mechanisms to prevent cancer development. These mechanisms were initially necessary for the evolution of multi-cellular organisms and became even more important as animals evolved large bodies and long lives. Indeed, the development and architecture of our tissues were evolutionarily constrained by the need to limit cancer. Cancer development within an individual is also an evolutionary process, which in many respects mirrors species evolution. Species evolve by mutation and selection acting on individuals in a population; tumors evolve by mutation and selection acting on cells in a tissue. The processes of mutation and selection are integral to the evolution of cancer at every step of multistage carcinogenesis, from tumor genesis to metastasis. Factors associated with cancer development, such as aging and carcinogens, have been shown to promote cancer evolution by impacting both mutation and selection processes. While there are therapies that can decimate a cancer cell population, unfortunately cancers can also evolve resistance to these therapies, leading to the resurgence of treatment-refractory disease. Understanding cancer from an evolutionary perspective can allow us to appreciate better why cancers predominantly occur in the elderly and why other conditions, from radiation exposure to smoking, are associated with increased cancers. Importantly, the application of evolutionary theory to cancer should engender new treatment strategies that could better control this dreaded disease.  相似文献   

15.
  相似文献   

16.
The perception of time is a fundamental part of human experience. Recent research suggests that the experience of time emerges from emotional and interoceptive (bodily) states as processed in the insular cortex. Whether there is an interaction between the conscious awareness of interoceptive states and time distortions induced by emotions has rarely been investigated so far. We aimed to address this question by the use of a retrospective time estimation task comparing two groups of participants. One group had a focus on interoceptive states and one had a focus on exteroceptive information while watching film clips depicting fear, amusement and neutral content. Main results were that attention to interoceptive processes significantly affected subjective time experience. Fear was accompanied with subjective time dilation that was more pronounced in the group with interoceptive focus, while amusement led to a quicker passage of time which was also increased by interoceptive focus. We conclude that retrospective temporal distortions are directly influenced by attention to bodily responses. These effects might crucially interact with arousal levels. Sympathetic nervous system activation affecting memory build-up might be the decisive factor influencing retrospective time judgments. Our data substantially extend former research findings underscoring the relevance of interoception for the effects of emotional states on subjective time experience.  相似文献   

17.
Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.  相似文献   

18.
19.
20.
Abstract: Vinblastine causes alterations in the subcellular distribution of certain proteins synthesized by telencephalon slices. Proteins in various subcellular fractions were separated according to their molecular weight by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and radioactive proteins were determined by autofluorography. A microvascular fraction contained very high amounts of radioactivity in proteins with a molecular weight of 71,000. At least one of these proteins accumulated in the microvascular fraction when the telencephalon slices were incubated in vinblastine. At the same time these proteins became depleted in a myelinated axon fraction, microsomal fraction, and soluble/cytosol fraction. Vinblastine also affected the subcellular distribution of some proteins with a molecular weight below 27,000, but unlike the proteins of mol. wt. 71,000 none of these were synthesized at very high rates. Vinblastine did not effect the synthesis of protein in telencephalon slices, nor did it alter the subcellular fractionation of particles and organelles from slices. It is suggested that a non-neuronal vinblastine-sensitive protein translocation system is functioning within the cells of the microvascular network in telencephalon slices, and that at least one protein of 71,000 molecular weight and one protein with a molecular weight below 27,000 are transported on this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号