首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Hemmi  J W Harper  J C Powers 《Biochemistry》1985,24(8):1841-1848
Several 3-halo-3-(1-haloalkyl)-1(3H)-isobenzofuranones, 3-(1-haloalkylidene)-1(3H)-isobenzofuranones, and 3-bromomethyl-1H-2-benzopyran-1-ones containing masked halo ketone functional groups were synthesized and tested as inhibitors of several serine proteases including human leukocyte (HL) elastase and cathepsin G. While many of the 3-halo-3-(1-haloalkyl)-1(3H)-isobenzofuranones were quite potent inhibitors of the enzymes tested, the alkylideneisobenzofuranones and benzopyran-1-ones inhibited poorly or not at all. The 3-halo-3-(1-haloalkyl)-1(3H)-isobenzofuranones decomposed rapidly upon addition to buffer to give the corresponding 3-alkyl-1H-2-benzopyran-1,4(3H)-diones. The pure benzopyran-1,4-diones were extremely potent inhibitors of HL elastase and chymotrypsin A alpha but did not inactivate porcine pancreatic elastase or cathepsin G. Enzymes inhibited by the isobenzofuranones and benzopyran-1,4-diones regained activity slowly upon standing or after dialysis (t1/2 = 5-16 h) and more rapidly in the presence of 0.5 M hydroxylamine, which indicated the presence of labile acyl moieties in the inhibited enzyme. These results are consistent with a scheme in which the active site serine of the protease reacts with the lactone carbonyl of these inhibitors to give a stable acyl enzyme and alkylation of another active site residue by the unmasked halo ketone functional group does not occur.  相似文献   

2.
Two novel peptide analogs, N alpha-[(S)-1-carboxy-3-phenylpropyl]L-alanyl-L-proline and the corresponding L-lysyl-L-proline derivative, have been demonstrated to be potent competitive inhibitors of purified rabbit lung angiotensin-converting enzyme: Ki = 2 and 1 X 10(-10) M, respectively, at pH 7.5, 25 degrees C, and 0.3 M chloride ion. Second-order rate constants for addition of these inhibitors to enzyme under the same conditions are in the range 1-2 X 10(6) M-1 s-1; first-order rate constants for dissociation of the EI complexes are in the range 1-4 X 10(-4) s-1. The association rate constants are similar to those measured for D-3-mercapto-2-methylpropanoyl-L-proline, captopril, but the dissociation rate constants are severalfold slower and account for the higher affinity of these inhibitors for the enzyme. The dissociation constant for the EI complex containing N alpha-[(S)-1-carboxy-3-phenylpropyl]L-alanyl-L-proline is pH-dependent, and reaches a minimum at approximately pH 6: Ki = 4 +/- 1 X 10(-11) M. The pH dependence is consistent either with a model for which the protonation state of the secondary nitrogen atom in the inhibitor determines binding affinity, or one for which ionizations on the enzyme alone influence affinity for these inhibitors. The affinity of this inhibitor for the zinc-free apoenzyme is 2 X 10(4) times less than for the zinc-free apoenzyme is 2 X 10(4) times less than that for the holoenzyme. If considered as a "collected product" inhibitor, N alpha-[(S)-1-carboxy-3-phenylpropyl]L-alanyl-L-proline appears to derive an additional factor of 375 M in its affinity for the enzyme compared to that of the two products of its hypothetical hydrolysis, a consequence of favorable entropy effects.  相似文献   

3.
U B Goli  R E Galardy 《Biochemistry》1986,25(22):7136-7142
Five phosphorus-containing inhibitors of angiotensin converting enzyme were found to exhibit slow, tight-binding kinetics by using furanacryloyl-L-phenylalanylglycylglycine as substrate at pH 7.50 and T = 25 degrees C. Two of the inhibitors, (O-ethylphospho)-Ala-Pro (2) and (O-isopropylphospho)-Ala-Pro (3), are found to follow at minimum a two-step mechanism of binding (mechanism B) to the enzyme. This mechanism consists of an initial fast formation of a weaker enzyme-inhibitor complex (Ki = 130 nM for 2 and 180 nM for 3) followed by a slow reversible isomerization to a tighter complex with measurable forward (K3) and reverse (k4) rate constants (k3 = 4.5 X 10(-2) s-1 for 2 and 5.4 X 10(-2) s-1 for 3; k4 = 9.2 X 10(-3) s-1 for 2 and 3.5 X 10(-3) s-1 for 3). For the remaining three inhibitors, phospho-Ala-Pro (1), (O-benzyl-phospho)-Ala-Pro (4), and (P-phenethylphosphono)-Ala-Pro (5), a one-step binding mechanism (mechanism A) is observed under the conditions of the experiment. The second-order rate constants k1 (M-1 s-1) for the binding of these inhibitors to converting enzyme are found to have values more than 3 orders of magnitude lower than the diffusion-controlled limit for a bimolecular reaction involving the enzyme, viz., 3.9 X 10(5) for 1, 2.2 X 10(5) for 4, and 4.8 X 10(5) for 5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
L-alanine hydroxamate derivatives were obtained by reaction of alkyl/arylsulfonyl halides with L-alanine, followed by treatment with benzyl chloride, and conversion of the COOH moiety to the CONHOH group with hydroxylamine in the presence of carbodiimides. Other derivatives were obtained by reaction of N-benzyl-alanine with aryl isocyanates, arylsulfonyl isocyanates or benzoyl isothiocyanate, followed by a similar conversion of the COOH to the CONHOH moiety. The obtained compounds were assayed as inhibitors of Clostridium histolyticum collagenase, ChC (EC 3.4.24.3), a zinc enzyme which degrades triple helical collagen. The hydroxamate derivatives were generally 100-500 times more active than the corresponding carboxylates. In the series of synthesized derivatives, substitution patterns leading to the most potent ChC inhibitors were those involving perfluoroalkylsulfonyl- and substituted-arylsulfonyl moieties, such as pentafluorophenylsulfonyl, 3- and 4-protected-aminophenylsulfonyl-, 3- and 4-carboxy-phenylsulfonyl-, 3-trifluoromethyl-phenylsulfonyl-, or 1- and 2-naphthylsulfonyl among others. Similarly to the matrix metalloproteinase (MMP) hydroxamate inhibitors, ChC inhibitors of the type reported here must incorporate hydrophobic moieties at the P(2') and P(3') sites, in order to achieve tight binding to the enzyme.  相似文献   

5.
The rat liver microsomal vitamin K-dependent carboxylase catalyzes the carboxylation of glutamyl to gamma-carboxyglutamyl residues in the presence of reduced vitamin K, O2 and CO2. The specificity of the enzyme for the vitamin substrate has been probed by the synthesis of a series of fluoro- hydroxy- and methoxy-analogs. 2-Fluoro-methyl-3-phytyl-1,4-naphthoquinone and 2-methyl-3-(1'-fluorodecyl)-1,4-naphthoquinone were synthesized but found to be unstable under enzyme assay conditions. The reduced (naphthohydroquinone) forms of 2-hydroxy-methyl-3-phytyl-1,4-naphthoquinone, 2-methoxymethyl-3-phytyl-1,4-naphthoquinone and 2-methyl-3-(1'-hydroxy-decyl)-1,4-naphthoquinone were inactive as substrates, but inhibitors of the enzyme. The two hydroxy analogs were shown to be low Ki (less than 10 microM) inhibitors of the reduced 2-methyl-3-phytyl-1,4-naphthoquinone-dependent activity of the enzyme. The oxidized forms of these compounds did not inhibit the enzyme and they had no activity as in vivo anticoagulants.  相似文献   

6.
Several classes of arylsulfone-based MMP-2/-9 inhibitors utilizing 6- to 8-membered heterocyclic rings as zinc-binding groups (ZBGs) have been synthesized and their enzyme inhibitory activities were evaluated. Although a number of 6- and 7-membered heterocycles were effective, the most potent arylsulfone inhibitors are based on the rigid 1- or 3-hydroxypyridone ZBG.  相似文献   

7.
S I Rao  M W Duffel 《Chirality》1991,3(2):104-111
Aryl sulfotransferase IV catalyzes the 3'-phosphoadenosine-5'-phosphosulfate (PAPS)-dependent formation of sulfuric acid esters of benzylic alcohols. Since the benzylic carbon bearing the hydroxyl group can be asymmetric, the possibility of stereochemical control of substrate specificity of the sulfotransferase was investigated with benzylic alcohols. Benzylic alcohols of known stereochemistry were examined as potential substrates and inhibitors for the homogeneous enzyme purified from rat liver. For 1-phenylethanol, both the (+)-(R)- and (-)-(S)-enantiomers were substrates for the enzyme, and the kcat/Km value for the (-)-(S)-enantiomer was twice that of the (+)-(R)-enantiomer. The enzyme displayed an absolute stereospecificity with ephedrine and pseudoephedrine, and with 2-methyl-1-phenyl-1-propanol; that is, only (-)-(1R,2S)-ephedrine, (-)-(1R,2R)-pseudoephedrine, and (-)-(S)-2-methyl-1-phenyl-1-propanol were substrates for the sulfotransferase. In the case of 1,2,3,4-tetrahydro-1-naphthol, only the (-)-(R)-enantiomer was a substrate for the enzyme. Both (+)-(R)-2-methyl-1-phenyl-1-propanol and (+)-(S)-1,2,3,4-tetrahydro-1-naphthol were competitive inhibitors of the aryl sulfotransferase-catalyzed sulfation of 1-naphthalenemethanol. Thus, the configuration of the benzylic carbon bearing the hydroxyl group determined whether these benzylic alcohols were substrates or inhibitors of the rat hepatic aryl sulfotransferase IV. Furthermore, benzylic alcohols such as (+)-(S)-1,2,3,4-tetrahydro-1-naphthol represent a new class of inhibitors for the aryl sulfotransferase.  相似文献   

8.
4,4'-Biphenyl-di-N-butylcarbamate (1), (S)-1,1'-bi-2-naphthyl-2, 2'-di-N-butylcarbamate (S-2), (S)-1, 1'-bi-2-naphthyl-2-N-butylcarbamate-2'-butyrate (S-3), 2, 2'-biphenyl-di-N-butylcarbamate (4), 2, 2'-biphenyl-2-N-octadecylcarbamate-2'-N-octylcarbamate (5), 2, 2'-biphenyl-2-N-octadecylcarbamate-2'-N-phenylcarbamate (6), 2, 2'-biphenyl-2-N-butylcarbamate-2'-butyrate (7), 2, 2'-biphenyl-2-N-butylcarbamate-2'-ol (8), 2, 2'-biphenyl-2-N-octylcarbamate-2'-ol (9), (R)-1, 1'-bi-2-N-naphthyl-2-butylcarbamate-2'-ol (R-10), and glyceryl-1,2, 3-tri-N-butylcarbamate (11) are prepared and evaluated for their inhibition effects on porcine pancreatic cholesterol esterase. All inhibitors are irreversible inhibitors of the enzyme. Carbamates 1-3 and 7-10 are the first alkyl chain and esteratic binding site-directed irreversible inhibitors due to the fact that the reactivity of the enzyme is protected by the irreversible inhibitor, trifluoroacetophenone in the presence of these carbamates. Carbamate 1 is the least potent inhibitor for the enzyme probably due to the fact that the inhibitor molecule adopts a linear conformation and one of the carbamyl groups of the inhibitor molecule covalently interacts with the first alkyl chain binding site of the enzyme while the other carbamyl group of the inhibitor molecule exposes outside the active site. With near orthogonal conformations at the pivot bond of biaryl groups, one carbamyl group of carbamates S-2, S-3, and R-10 covalently binds to the first alkyl chain binding site of the enzyme while the other carbamyl, butyryl, or hydroxy group can not bind covalently to the second alkyl chain binding site probably due to the orthogonal conformations. Carbamates 4-9 and 11 are very potent inhibitors for the enzyme probably due to the fact that all these molecules freely rotate at the pivot bond of the biphenyl or glyceryl group and therefore can fit well into the bent-shaped first and second alkyl chains binding sites of the enzyme. Although, carbamates 4-6 and 11 are irreversible inhibitors of cholesterol esterase, the enzyme is not protected but further inhibited by trifluoroacetophenone in the presence of these carbamates. Therefore, carbamates 4-6 and 11 covalently bind to the first alkyl chain binding site of the enzyme by one of the carbamyl groups and may also bind to the second alkyl chain binding site of the enzyme by the second carbamyl group. Besides the bent-shaped conformation, the inhibition by carbamate 6 is probably assisted by a favorable pi-pi interaction between Phe 324 at the second alkyl chain binding site of the enzyme and the phenyl group of the inhibitor molecule. For cholesterol esterase, carbamates 8-10 are more potent than carbamates S-2, 4, and 5 probably due to the fact that the inhibitor molecules interact with the second alkyl chain binding site of the enzyme through a hydrogen bond between the phenol hydroxy group of the inhibitor molecules and the His 435 residue in that site.  相似文献   

9.
Type 3 17beta-hydroxysteroid dehydrogenase (17beta-HSD), a key steroidogenic enzyme, transforms 4-androstene-3,17-dione (Delta(4)-dione) into testosterone. In order to produce potential inhibitors, we performed solid-phase synthesis of model libraries of 3beta-peptido-3alpha-hydroxy-5alpha-androstan-17-ones with 1, 2, or 3 levels of molecular diversity, obtaining good overall yields (23-58%) and a high average purity (86%, without any purification steps) using the Leznoff's acetal linker. The libraries were rapidly synthesized in a parallel format and the generated compounds were tested as inhibitors of type 3 17beta-HSD. Potent inhibitors were identified from these model libraries, especially six members of the level 3 library having at least one phenyl group. One of them, the 3beta-(N-heptanoyl-L-phenylalanine-L-leucine-aminomethyl)-3alpha-hydroxy-5alpha-androstan-17-one (42) inhibited the enzyme with an IC(50) value of 227nM, which is twice as potent as the natural substrate Delta(4)-dione when used itself as an inhibitor. Using the proliferation of androgen-sensitive (AR(+)) Shionogi cells as model of androgenicity, the compound 42 induced only a slight proliferation at 1 microM (less than previously reported type 3 17beta-HSD inhibitors) and, interestingly, no proliferation at 0.1 microM.  相似文献   

10.
The non-steroidal allylic and acetylenic alcohols 1-(4'-nitrophenyl)prop-2-en-1-ol (I) and 1-(4'-nitrophenyl)prop-2-yn-1-ol (II) are oxidized by homogeneous 3 alpha-hydroxysteroid dehydrogenase to the corresponding alpha beta-unsaturated ketones 1-(4'-nitrophenyl)prop-2-en-1-one (III) and 1-(4'-nitrophenyl)prop-2-yn-1-one (IV), which then inactivate the enzyme selectively with high affinity; low effective partition ratios are observed for the parent alcohols [Ricigliano & Penning (1989) Biochem. J. 262, 139-149]. Inactivation of 3 alpha-hydroxysteroid dehydrogenase by compound (I) displays an NAD+ concentration optimum. Scavenging experiments indicate that the enzyme-generated inactivators (III) and (IV) alkylate the enzyme via a release-and-return mechanism. Several lines of evidence suggest that compounds (III) and (IV) covalently modify the NAD(P)(+)-binding site. First, micromolar concentrations of NAD(P)H offer substantial protection against enzyme inactivation mediated by Michael acceptors (III) and (IV). In these protection studies Kd measurements for NAD(P)H approached those measured by fluorescence titration of free enzyme. Secondly, under initial-velocity conditions compounds (III) and (IV) act essentially as competitive inhibitors of NAD+ binding, and as mixed competitive or non-competitive inhibitors against androsterone binding. Thirdly, enzyme inactivated with either compound (III) or compound (IV) fails to bind to NAD+ affinity columns (e.g. Affi-gel Blue). Under the same conditions of chromatography native enzyme and enzyme affinity-labelled at the steroid-binding site with 17 beta-bromoacetoxy-5 alpha-dihydrotestosterone is retained on the affinity column. A kinetic scheme that represents the inactivation of the homogeneous dehydrogenase by the enzyme-generated alkylators (III) and (IV) is presented.  相似文献   

11.
Green MD  Jiang X  King CD 《Life sciences》2004,75(8):947-953
Characterization of new chemical entities for their potential to produce drug-drug interactions is an important aspect of early drug discovery screening. In the present study, the potential for three metabotropic glutamate receptor antagonists to interact with recombinant human CYPs was investigated. 2-Methyl-6-(phenylethenyl) pyridine (SIB-1893), 2-methyl-6-(phenylethynyl) pyridine (MPEP) and 3-[2-methyl-1,3-thiazol-4-yl) ethynyl]-pyridine (MTEP) were moderate competitive inhibitors of recombinant human CYP1A2 (Ki, 0.5-1 microM). SIB-1893, but not MPEP or MTEP, was also a moderate competitive inhibitor of CYP1B1. MPEP and MTEP were weak inhibitors of CYP2C19. None of the three compounds tested were significant inhibitors (IC(50) values >50 microM) of CYP3A4, 2C9, 2D6, 2A6, 2B6 or 2E1. The results suggest that MTEP is a selective inhibitor of CYP1A2 and may prove to be a useful tool in studying drug-drug interactions involving this enzyme.  相似文献   

12.
A number of nonsteroidal anti-inflammatory drugs are non-competitive or mixed inhibitors of human placental dehydrogenases. - and -sulindac sulfide and - and -sulindac inhibit the NAD-linked enzyme as well or better than they inhibit various cyclooxygenases . The remainder of the compounds tested are at least one order of magnitude less effective as inhibitors of the 15-hydroxyprostaglandin dehydrogenases than they are as inhibitors of cyclooxygenases. - and -sulindac sulfide are sufficiently strong inhibitors of the NAD-linked enzyme (Kis of 7.8 μM and 6.8 μM respectively) to raise the possibility that they might also inhibit this enzyme .  相似文献   

13.
A Sivak 《In vitro》1977,13(6):337-343
Cell division is induced in stationary cultures of BALB/c-3T3 mouse embryo cells without renewal of medium by addition of the tumor promoter, phorbol myristate acetate (PMA), or bovine serum. The addition of dbcAMP (10(-3) M) or other inhibitors of cAMP phosphodiesterase, papaverine (6.7 X 10(-6) M), Persantin (5 X 10(-5) M) or RO-20-1724 (10(-4) M), prevents cell replication induced by PMA or serum. In contrast, ouabain (10(-4) M) and N,N'-dicyclohexylcarbodiimide (10(-5) M), inhibitors of Na+-K+-ATPase activity, block the PMA-stimulated effect but do not inhibit serum-stimulated cell division. Several stages in the cell cycle are sensitive to dbcAMP addition. One is early in the G1 phase at the time of reinitiation of the cell cycle from a stationary (Go) phase, a second is associated with the G1-S transition, and a third with passage of cells from a post-S phase to mitosis. Based on observations of early morphological changes, responses of plasma membrane enzymes and effects of enzyme inhibitors, the stimulation of cell division in BALB/c-3T3 cells by PMA or serum appears to involve several membrane functions which may act in a cooperative manner.  相似文献   

14.
In a search for novel inhibitors of RA-metabolising enzyme inhibitors as potential anti-cancer agents some 1,2-ethandiones, 2-hydroxyethanones and 1-ethylenedioxyethanones based on aryl-substituted 1,2-diphenylethane have been examined. Several of the compounds were weak inhibitors of the non-specific rat liver microsomal P450 enzymes and moderate inhibitors of the RA-induced enzymes in cultured human genital fibroblasts, where the RA-specific enzyme CYP26 is probably expressed. The 2-hydroxyethanone (13) with a 1-(4-dimethylaminophenyl) substituent was overall the most potent compound for rat liver microsomal enzyme (IC50 = 52.1 microM; ketoconazole, 2.8 microM) and the RA-induced enzyme (100 microM, 65.9% inhibition; ketoconazole, 20 microM, 75.0%). Modification of the dimethylamino group in (13) with more hydrophobic dialkylamino functions or separate modification of the 2-(2,4-dichlorophenyl) function did not improve potency.  相似文献   

15.
1. The purification and crystallization of 3-hydroxybutyrate dehydrogenase from extracts of Rhodopseudomonas spheroides is described. 2. The molecular weight was calculated to be 85000 by sedimentation equilibrium. 3. Although the enzyme is stable at 0-4 degrees , dilute solutions are rapidly inactivated at 37 degrees ; NADH(2) or Ca(2+) ions prevent this inactivation. 4. The enzyme is extremely sensitive to mercurials, but can be protected by NADH(2) or Ca(2+) ions. 5. From studies on p-hydroxymercuribenzoate binding it is estimated that the enzyme contains 5-6 moles of rapidly reacting thiol groups/mole. 6. d-Lactate and dl-2-hydroxybutyrate are competitive inhibitors of d-3-hydroxybutyrate oxidation. 7. The properties of the crystalline enzyme are compared with those of 3-hydroxybutyrate dehydrogenase preparations from other sources.  相似文献   

16.
CI-906, [3S-[2[R*(R*)]], 3R*]-2-[2-[[1-(ethoxycarbonyl)-3-phenylpropyl]-amino]-1-oxopropyl] 1,2,3,4-tetrahydro-3-isoquinolinecarboxylic acid, monohydrochloride, and CI-907, [2S-[1[R*(R*)]], 2 alpha, 3a beta, 7a 7a beta]-1-[2-[[1-(ethoxycarbonyl)-3-phenylpropyl]amino] 1-oxopropyl]octahydro-1H-indole-2-carboxylic acid, monohydrochloride, are two new nonsulfhydryl-type angiotensin-converting enzyme (ACE) inhibitors. Monoester (prodrug) and diacid forms produced concentration-related ACE inhibition in guinea pig serum (IC50 for CI-906 = 8.3 X 10(-9) M, diacid = 2.8 X 10(-9) M; CI-907 = 1.0 X 10(-7) M, diacid = 2.6 X 10(-9) M). In isolated rabbit aortic rings and in in vivo rat and dog autonomic studies, both compounds were highly specific in suppressing the contractile or pressor responses to angiotensin I. In two-kidney, one-clip Goldblatt (renin-dependent) hypertensive rats there was a good correlation between the inhibition of vascular converting enzyme and blood pressure lowering and a poor correlation between blood pressure lowering and plasma and brain converting enzyme inhibition. Cardiovascular, pulmonary, and central nervous system performance evaluations showed no side effects or gross toxicity. The preclinical profile shows CI-906 and CI-907 to be specific, potent, orally active ACE inhibitors. They are expected to have therapeutic utility in hypertension and in any other condition where converting enzyme inhibition would be useful.  相似文献   

17.
Aldose reductase inhibitors (ARIs) suppressing the hyperglycemia-induced polyol pathway have been provided as potential therapeutic candidates in the treatment and prevention of diabetic complications. Based upon structure-activity relationships of desmethylanhydroicaritin (1) and sophoflavescenol (2) as promising ARIs, 3,4'-dihydroxy flavonols with a prenyl or lavandulyl group at the C-8 position and a hydroxyl or methoxy group at the C-5 position are important for aldose reductase (AR) inhibition. In order to prove the above results, a combination of computational prediction and enzyme kinetics has begun to emerge as an effective screening technique for the potential. In the present study, we predicted the 3D structure of AR in rat and human using a docking algorithm to simulate binding between AR and prenylated flavonoids (1 and 2) and kaempferol (3) and scrutinized the reversible inhibition of AR by these ARIs. Docking simulation results of 1-3 demonstrated negative binding energies (Autodock 4.0=-9.11 to -7.64 kcal/mol; Fred 2.0=-79.54 to -51.84 kcal/mol) and an additional hydrogen bond through Phe122 and Trp219, in addition to the previously proposed interaction of AR and phenolics through Trp20, Tyr48, His110, and Trp111 residues, indicating that the presence of 8-prenyl and 5-methyl groups might potentiate tighter binding to the active site of the enzyme and more effective AR inhibitors. Moreover, types of AR inhibition were different depending on the presence or absence of the 8-prenyl group, in that 1 and 2 are mixed inhibitors with respective Ki values of 0.69 μM and 0.94 μM, while 3 showed noncompetitive inhibition with a Ki value of 4.65 μM. The present study suggests that an effective strategy for screening potential ARIs could be established by predicting 3D structural conformation of prenylated flavonoids and the orientation within the enzyme as well as by simultaneously determining the mode of enzyme inhibition.  相似文献   

18.
Several pyrrolidine derivatives have been synthesized and examined for their inhibitory activity on post-proline cleaving enzymes from Flavobacterium meningosepticum and bovine brain. Almost all the compounds tested in this study inhibited the activity of both enzymes at low IC50 values (from nM to microM) but a specificity difference was observed with alkylacyl-peptidyl-pyrrolidine derivatives which strongly inhibited only the bacterial enzyme. The most effective inhibitors have a proline residue on their P2 sites and a substituted or unsubstituted phenoxybutyryl moiety on their P3 sites. Thus phenoxybutyryl-prolyl-pyrrolidine is the most effective partial structure of the inhibitors. The best inhibitors found were: 4-(4-benzylphenoxy)butyryl-prolyl-pyrrolidine for bacterial enzyme (IC50 1.4 nM) and 4-phenylbutyryl-thioprolyl-pyrrolidine for bovine brain enzyme (IC50 67 nM). In the passive avoidance test, using amnesic rats experimentally induced with scopolamine, the pyrrolidine derivatives which had potent inhibitory activity toward post-proline cleaving enzymes also showed strong anti-amnesic activities at doses of 1-5 mg/kg, i.p.  相似文献   

19.
One proposed mechanism of the inactivation of lipoxygenase by inhibitors is the reduction of the catalytically active ferric form of the enzyme to its ferrous form. Recent studies have shown that compounds containing the hydroxamate moiety are potent inhibitors of lipoxygenase. The hydroxamate portion of the inhibitor is thought to bind to iron at the catalytic site of the enzyme. We now report evidence that the NOH of the hydroxamate group of N-(4-chlorophenyl)-N-hydroxy-N'-(3-chlorophenyl)urea, N-[(E)-3-(3-phenoxyphenyl)prop-2-enyl]acetohydroxamic acid (BW A4C), and N-(1-benzo(b)thien-2-ylethyl)-N-hydroxyurea (Zileuton) is oxidized by lipoxygenase to form their corresponding nitroxides, which are directly detected by electron paramagnetic resonance spectroscopy. It is consistently found that the selected NOH-containing compounds, e.g. alkylhydroxylamines or N-hydroxyureas, are also oxidized by lipoxygenase to form their corresponding nitroxides.  相似文献   

20.
A series of aza inhibitors (4-9) of chorismate mutase (E.C. 5.4.99.5) was designed, prepared, and evaluated against the enzyme by monitoring the direct inhibition of the chorismate, 1, to prephenate, 2, conversion. None of these aza inhibitors displayed tighter binding to the enzyme than the native substrate chorismate or greater inhibitory action than the previously reported ether analogue, 3. Furthermore, no time-dependent loss of enzyme activity was observed in the presence of the two potentially reactive aza inhibitors (7 and 9). These results in conjunction with inhibition data from a broader series of chorismate mutase inhibitors allowed a novel proposal for the mechanistic role of chorismate mutase to be developed. This proposed mechanism was computationally verified and correlated with crystallographic studies of various chorismate mutases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号