首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synchronous cultures of HeLa cells were obtained by selective detachment of cells in mitosis and fluctuations in enzyme activity were followed during the subsequent cell cycle. The enzymes measured were alkaline and acid phosphatases and a nuclease active on denatured DNA at alkaline pH (alkaline DNase). Each of these enzymes showed a different pattern of activity in the cell cycle, but a temporal relationship to the DNA synthetic phase was apparent in each case. Treatment of the cultures at the beginning of the cell cycle with 15 mM thymidine did not alter the subsequent pattern of fluctuations in activity of alkaline phosphatase or of acid phosphatase, although DNA synthesis was fully inhibited by this treatment. This indicates that the pattern of activity of some enzymes is not linked to DNA replication. On the other hand, the pattern of fluctuations in the activity of alkaline DNase was abolished by thymidine treatment, and elevation of the activity of this enzyme was observed. These results suggest complex and variable relationships between phases of the cell cycle and enzyme activity, and show that inhibition of DNA synthesis is not a suitable procedure for induction of culture synchrony if enzyme activities are to be studied.  相似文献   

2.
The activities throughout the cell cycle of thymidine kinase (EC 2.7.1.21), dihydrothymine dehydrogenase (EC 1.3.1.2), thymidine phosphorylase (EC 2.4.2.4) and dTMP phosphatase (EC 3.1.3.35) were measured in the Epstein-Barr virally transformed human B lymphocyte line LAZ-007. Cells were synchronised at different stages of the cell cycle using the technique of centrifugal elutriation. The degree of synchrony in each cycle-stage cell population was determined by flow microfluorimetric analysis of DNA content and by measurement of thymidine incorporation into DNA. The activity of the anabolic enzyme thymidine kinase was low in the G1 phase cells, but increased many-fold during the S and G2 phases, reaching a maximum after the peak of DNA synthesis, then decreasing in late G2 + M phase. By contrast, the specific activities of the enzymes involved in thymidine and thymidylate catabolism, dihydrothymine dehydrogenase, thymidine phosphorylase and dTMP phosphatase remained essentially constant throughout the cell cycle, indicating that the fate of thymidine at different stages of the cell cycle is governed primarily by regulation of the level of the anabolic enzyme thymidine kinase and not by regulation of the levels of thymidine catabolising enzymes.  相似文献   

3.
The cell cycle phase distribution of two human lung cancer cell lines (HS 24 and HS 57) grown both to half-confluency and confluency was determined. Both cell lines were then synchronized by applying a thymidine block forcing them to stay in the S-phase. After removal of the thymidine block, which allows the cells to go then through their cell cycle phases, N-acylamino acylpeptide hydrolase (EC 3.4.19.1) activity was measured using N-acetylalanine-p-nitroanilide as substrate (N-acetylalanine aminopeptidase). At the same times that the enzymatic activity was measured, the cell cycle phase distribution was analyzed, in order to determine the cell cycle phase of N-acetylalanine aminopeptidase synthesis. However, the cell cycle phase of N-acetylalanine aminopeptidase synthesis could not be determined. This result was caused by the fact that the cells remained synchronous only for a short period of time.  相似文献   

4.
CL (cardiolipin) is a key phospholipid involved in ATP generation. Since progression through the cell cycle requires ATP we examined regulation of CL synthesis during S-phase in human cells and investigated whether CL or CL synthesis was required to support nucleotide synthesis in S-phase. HeLa cells were made quiescent by serum depletion for 24 h. Serum addition resulted in substantial stimulation of [methyl-(3)H]thymidine incorporation into cells compared with serum-starved cells by 8 h, confirming entry into the S-phase. CL mass was unaltered at 8 h, but increased 2-fold by 16 h post-serum addition compared with serum-starved cells. The reason for the increase in CL mass upon entry into S-phase was an increase in activity and expression of CL de novo biosynthetic and remodelling enzymes and this paralleled the increase in mitochondrial mass. CL de novo biosynthesis from D-[U-(14)C]glucose was elevated, and from [1,3-(3)H]glycerol reduced, upon serum addition to quiescent cells compared with controls and this was a result of differences in the selection of precursor pools at the level of uptake. Triascin C treatment inhibited CL synthesis from [1-(14)C]oleate but did not affect [methyl-(3)H]thymidine incorporation into HeLa cells upon serum addition to serum-starved cells. Barth Syndrome lymphoblasts, which exhibit reduced CL, showed similar [methyl-(3)H]thymidine incorporation into cells upon serum addition to serum-starved cells compared with cells from normal aged-matched controls. The results indicate that CL de novo biosynthesis is up-regulated via elevated activity and expression of CL biosynthetic genes and this accounted for the doubling of CL seen during S-phase; however, normal de novo CL biosynthesis or CL itself is not essential to support nucleotide synthesis during entry into S-phase of the human cell cycle.  相似文献   

5.
At different time intervals after injection of Bleomycin (BLM) th effect on several kinetic parameters of the hairless mouse epidermis stimulated to proliferate by previous adhesive tape stripping was measured. Micro-flow fluorometry was used to determine the relative number of cells in the various phases of the cell cycle (G1, S and G2). Tritiated thymidine was used to determine labelling indices and grain counts. Colcemid was used to observe the mitotic rate. An initial decrease followed by a subsequent significant increase compared to the non-BLM-treated controls was observed in all parameters studied except the mitotic rate, which remained lower than in the control animals during all 48 hours. The transit time of the cells through the S-phase was initially slightly prolonged, but thereafter it seemed to be shorter than that of the controls. BLM seems to provoke a partial blocking of cells in the G1 phase. When the block is released, a greater number of cells pass through the S phase in partial synchrony at a higher than normal speed. BLM induced a low mitotic rate which remained below the level of that of the normal animals after stripping, even though there obviously was a considerably higher influx of cells from the S phase to the G2 phase. This resulted in a subsequent accumulation of cells in the G2-phase. Thus, BLM has also a blocking effect on the G2-M boundary of the cell cycle. This inhibitory effect of BLM on the mitotic rate was shown to be independent of the effect of BLM on the DNA synthesis. BLM therefore seems to have complex influence on epidermal cell kinetics in vivo. Cells in G1-phase are partially and transiently blocked, but this block is soon released. These cells thereafter pass through the S-phase and pile up in the G2-phase, because BLM also blocks the passage of cells from the G2-phase to mitosis. The overall reduction in cell proliferation seen after BLM in vivo seems mainly to be due to the effect on the G2-M boundray of the cell cycle.  相似文献   

6.
Thymidine kinase (TK) and its isoenzymes were studied in relation to age of Ehrlich ascites tumour cells growing in vivo. Various steps of the pathway of thymidine through deoxynucleotide metabolism were studied: [3H]-thymidine cellular uptake and incorporation into DNA; the cellular nucleotide pools; and the concentration of thymidine in ascites. In addition, the proportion of cells in the various parts of the cell cycle and the bromodeoxyuridine labelling index were determined. Four isoenzymes at pI 4.1, 5.3, 6.9 and 8.3 were identified using isoelectric focusing. The TK activity declined with age of the tumour by about 90%, mostly due to a decrease of the isoenzyme at pI 8.3. However, this decline was neither related to the changes in DNA synthesis rate of the cells with tumour age, nor to the proportion of cells in S-phase or the bromodeoxyuridine (BrdU) labelling index. In contrast, the contribution of DNA synthesis via the thymidine salvage pathway relative to the total DNA synthesis increased from less than 1% at exponential growth to about 15% at plateau phase of growth. Blocking of DNA synthesis by aphidicolin did not change the TK activity. We therefore conclude that changes in TK activity and changes in cell growth are epiphenomena rather than causally related to each other. All nucleotide pools decreased with tumour age. The inhibition of TK by an increase in the deoxythymidine triphosphate pool could therefore be excluded. With a decrease of the TK activity during tumour growth, increasing amounts of TdR were excreted by the cells and accumulated in the ascites fluid. To explain our results on TK activity we propose a substrate cycle in which thymidine monophosphate supplied by de novo synthesis is dephosphorylated and is then either phosphorylated by TK to thymidine monophosphate or excreted by the cell.  相似文献   

7.
Immunochemical analysis was employed to investigate the cell cycle-dependent protein-DNA crosslinking by cis-diamminedichloroplatinum II (cis-DDP), in HeLa-S3 cells. Cells synchronized by double thymidine block or hydroxyurea were released into S phase and incubated at 2-h intervals with cis-DDP as they progressed through S1, G2, M, and then into G1 and S phases of the subsequent cycle. Immunoblots of the DNA-crosslinked antigens reacted with antisera to 0.35 M NaCl extract or residue of HeLa S-phase nuclei revealed that several antigens changed their DNA-crosslinking pattern during the progression of HeLa cells through their reproductive cycle.  相似文献   

8.
We developed a double-label method to directly measure the rate at which cells enter S-phase of the cell cycle. All cells in S-phase were first labeled with a short pulse of [3H]-thymidine. This was followed by a longer incubation in bromodeoxyuridine (BrdU), a thymidine analogue. Nuclei labeled with [3H]-thymidine were detected by autoradiography and those labeled with BrdU by immunocytochemistry. Cells labeled only with BrdU must have entered S-phase at some time after the end of the [3H]-thymidine pulse. Thus, the rate of entry of cells into S-phase could be determined. This method was shown to be more accurate and more sensitive than determining changes in the rate at which cells entered S-phase with a continuous labeling protocol. It was possible to detect changes in proliferative activity that occurred in less than 1 hr. We used this double-label technique to study changes in the cell cycle during the terminal differentiation of chicken embryo lens fiber cells. These studies revealed differences in the effects of several treatments known to stimulate fiber cell differentiation. They also demonstrated the presence in the embryonic eye of factors that stimulate and prevent lens cell proliferation and differentiation.  相似文献   

9.
Synchronous cultures of HeLa cells obtained by selective detachment of mitoses were treated with high concentrations of thymidine. The inhibitor was added soon after completion of cell division and rates of cell enlargement and accumulation of DNA, RNA and protein were compared for untreated and thymidine-treated cultures at various points of the cell cycle. It was found that concentrations of thymidine which in randomly growing cultures inhibit the rate of cell division by more than 90% allowed a considerable degree of DNA synthesis and did not affect the rate of accumulation of RNA and protein, when applied to cells in the G1 phase of synchronous culture. Treated and untreated cells enlarged at the same rate throughout their life cycle. The results show that concentrations of thymidine commonly employed to produce cell synchrony do not arrest the cells at the G1-S boundary, but allow slow progress through S in respect to DNA synthesis, and near-normal progress towards G2 as regards RNA and protein accumulation and cell enlargement.  相似文献   

10.
Abstract. Thymidine kinase (TK) and its isoenzymes were studied in relation to age of Ehrlich ascites tumour cells growing in vivo. Various steps of the pathway of thymidine through deoxynucleotide metabolism were studied: [3H]-thymidine cellular uptake and incorporation into DNA; the cellular nucleotide pools; and the concentration of thymidine in ascites. In addition, the proportion of cells in the various parts of the cell cycle and the bromodeoxyuridine labelling index were determined.
Four isoenzymes at pi 41, 5-3, 6–9 and 8-3 were identified using isoelectric focusing. The TK activity declined with age of the tumour by about 90%, mostly due to a decrease of the isoenzyme at pi 8-3. However, this decline was neither related to the changes in DNA synthesis rate of the cells with tumour age, nor to the proportion of cells in S-phase or the bromodeoxyuridine (BrdU) labelling index. In contrast, the contribution of DNA synthesis via the thymidine salvage pathway relative to the total DNA synthesis increased from less than 1% at exponential growth to about 15% at plateau phase of growth. Blocking of DNA synthesis by aphidicolin did not change the TK activity. We therefore conclude that changes in TK activity and changes in cell growth are epiphenomena rather than causally related to each other.
All nucleotide pools decreased with tumour age. The inhibition of TK by an increase in the deoxythymidine triphosphate pool could therefore be excluded. With a decrease of the TK activity during tumour growth, increasing amounts of TdR were excreted by the cells and accumulated in the ascites fluid. To explain our results on TK activity we propose a substrate cycle in which thymidine monophosphate supplied by de novo synthesis is dephosphorylated and is then either phosphorylated by TK to thymidine monophosphate or excreted by the cell.  相似文献   

11.
Lavoie J  Drouin R 《Chromosoma》2001,110(7):501-510
Early and late S-phase of the cell cycle are separated by the R-band/G-band (R/G) transition. This corresponds to the time at which R-band synthesis has been completed while G-band synthesis has yet to begin. The aim of this work was to study cell cycle kinetics during S-phase using different blocking agents: mimosine, methotrexate, 5-fluorouracil, 5-fluoro-2'-deoxyuridine and an excess of thymidine. The stage at which these blocking agents arrest the cell cycle and their efficiency at blocking Epstein-Barr virus transformed lymphoblasts at the R/G transition were evaluated using flow cytometric techniques. Mimosine blocked 90% of the cells near the G1/S-phase boundary. Methotrexate, 5-fluoro-2'-deoxyuridine and 5-fluorouracil, and particularly thymidine, let a significant proportion of cells enter S-phase. The cells were released from the arrest state and their progression through early S-phase was monitored by flow cytometry. Before the cells reached the R/G transition, a second agent was added to inhibit cell cycle progression. For example, the use of mimosine followed by thymidine allowed up to 60% of the cells to be blocked at the R/G transition. The arrest of DNA replication at the R/G transition was confirmed by a marked decrease of 5-bromo-2'-deoxyuridine (BrdUrd) incorporation, revealed by using bivariate flow cytometric analysis. The blocking agent was then removed and the cell cohort was released in the presence of BrdUrd so that replication banding analysis could be performed on the harvested mitotic cells. This yielded a mitotic index of approximately 10% and chromosomes showing replication bands. Flow cytometric analysis combined with cytogenetic banding analysis suggested that the R/G transition is an arrest point within the S-phase of the cell cycle and allowed us to conclude that only cells that have already initiated S-phase are blocked at this point. It corresponds to a susceptible site where S-phase can be arrested easily. The R/G transition could also be a regulatory checkpoint within S-phase, a checkpoint that could respond to imbalance in deoxyribonucleotide pools.  相似文献   

12.
P G Young  S Corff  S Yuyama 《Cytobios》1977,20(79-80):191-198
The presence of thymidine kinase has recently been reported in Tetrahymena pyriformis. The activity pattern for this enzyme was investigated during the cell cycle in both the one heat-shock per cell generation and the starvation-refeed system. Thymidine kinase was found to be a peak enzyme during S-phase in both situations. Nucleoside phosphotransferase was a continuous enzyme in the one heat-shock per cycle system, however, it closely paralleled the thymidine kinase curve during starvation and refeeding.  相似文献   

13.
The correlation between the rates of protein and nucleic acid synthesis and the activity of the key enzymes of glycolysis (hexokinase, phosphofructokinase) and pentose phosphate cycle (glucose-6-phosphate dehydrogenase) in the mitotic cycle of human diploid fibroblasts synchronized by double thymidine block was studied. It was found that the removal of the thymidine block is followed by short-term (presumably, non-specific) simultaneous stimulation of matrix syntheses, as well as by glycolytic and pentose phosphate cycle enzyme syntheses. By the beginning of the S-phase, all the processes appear to be inhibited, followed by gradual activation of glycolysis and pentose phosphate cycle reactions. The implementation of the cell cycle is concomitant with stepwise transitions of protein and hexokinase synthesis rates and ATP content to one of the following levels--basal, intermediate or maximal. Changes in the activity of glucose-6-phosphate dehydrogenase in the course of the cell cycle appear as oscillations, those in phosphofructokinase as alternative states. At stage M, the oscillatory processes are temporarily quenched, whereas the ATP content occupies an intermediate level. In contrast with diploid fibroblasts, in transformed T9 cells the enzyme activity is much higher, and the fluctuations in activity throughout the cell cycle are less noticeable. Presumably, in transformed cells the enzyme activity is at the maximum level and is not prone to effector regulation.  相似文献   

14.
Regulation of human thymidine kinase during the cell cycle   总被引:42,自引:0,他引:42  
  相似文献   

15.
Phosphatidylinositol-3 kinase (PI3K) proteins are important regulators of cell survival and proliferation. PI3K-dependent signalling regulates cell proliferation by promoting G1- to S-phase progression during the cell cycle. However, a definitive role for PI3K at other times during the cell cycle is less clear. In these studies, we provide evidence that PI3K activity is required during DNA synthesis (S-phase) and G2-phase of the cell cycle. Inhibition of PI3K with LY294002 at the onset of S-phase caused a 4- to 5-h delay in progression through G2/M. LY294002 treatment at the end of S-phase caused an approximate 2-h delay in progression through G2/M, indicating that PI3K activity functions for both S- and G2-phase progression. The expression of constitutively activated Akt partially reversed the inhibitory effects of LY294002 on mitotic entry, which demonstrated that Akt was one PI3K target that was required during G2/M transitions. Inhibition of PI3K resulted in enhanced susceptibility of G2/M synchronized cells to undergo apoptosis in response to DNA damage as compared to asynchronous cells. Thus, similar to its role in promoting cell survival and cell cycle transitions from G1 to S phase, PI3K activity appears to promote entry into mitosis and protect against cell death during S- and G2-phase progression.  相似文献   

16.
Both normal and leukemic human lymphoid cell lines were separated into populations corresponding to different positions in the cell cycle by centrifugal elutriation. Each population was analyzed for cell concentration, cell volume, [3H]thymidine incorporation, percentage S phase by autoradiography, and percent G1, S, and G2/M phases by flow cytometry. The smallest cells, collected at the lowest flow rate, were in G1 phase. Cells collected at increasing flow rates progressively increased in volume and represented distinct positions in the cell cycle transition from G1 phase, through S phase, and into G2/M phase. The purity of the G1 population varied according to cell load. One hundred percent of cells were recovered and cells collected in G1- and S-phase populations proliferated in culture with patterns characteristic of synchronized cells. An aneuploidy leukemia cell line, CEM, was separated into near-diploid and near-tetraploid populations by centrifugal elutriation. This method of cell separation provides large numbers of human lymphoid cells at different positions in the cell cycle for investigating the relationship between the cell cycle and various surface membrane and metabolic properties of cells. Aneuploid leukemia and lymphoma cells can be separated by centrifugal elutriation into populations which contain different numbers of chromosomes for comparisons of their biologic properties.  相似文献   

17.
The pattern of transglutaminase gene expression through the cell cycle was examined by Northern blot analysis using cultured bovine endothelial cells and a cDNA probe. When the cells reached confluency or were arrested in G0/G1 phase by nutrition deprivation, transglutaminase mRNA rose to a very high level; S- and M-phase extracts showed high and low levels, respectively. Subcellular localization studies by sucrose gradient centrifugation and immunostaining demonstrated that the majority of transglutaminase is present in cytosols throughout the cycle. The cell cycle-dependent changes in the transglutaminase mRNA levels strongly support the implicated involvement of the enzyme in cell growth, differentiation, and senescence.  相似文献   

18.
Abstract. Hydroxyurea induces profound changes in the pluripotential haemopoietic stem cell (CFU-s) kinetics. The main feature of these changes is a synchronous entry of resting Go CFU-s into the cell cycle. The analysis of the passage of the CFU-s cohort through the cell cycle has been largely based on the examination of the fraction of CFU-s which synthesize DNA in the S phase of the cell cycle. This analysis has, however, been hampered by the fact that both the sensitivity of the S phase CFU-s to hydroxyurea and their sensitivity in the [3H] thymidine suicide technique vary as the cells pass through the S phase. Methods which overcome these difficulties have been used in the experiments presented in this paper.
It was demonstrated that hydroxyurea kills only about 80% of the S phase CFU-s. The sensitivity to hydroxyurea gradually decreases as the cells approach the middle part of the S phase and increases again as the cells enter the late portions of the S phase.
The degree of CFU-s synchrony at the point of entry into and exit from, the S phase has been established. Mathematical analysis of the available data suggests that CFU-s pass through the S phase with a mean transit time of 4–79 hr (standard deviation, 1.45 hr).
Hydroxyurea, administered in vivo , blocks CFU-s in the late G1 phase. The duration of this G1-S block, induced by a dose of 1000 mg of hydroxyurea per kg body weight, is approximately 2 hr. The CFU-s in the middle of the S phase, which survive hydroxyurea administration, are also blocked in their passage through the S phase. These cells, however, seem to finish the S phase with a delay of approximately 2 hr.  相似文献   

19.
Cellular uptake of [3H]thymidine [( 3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 X 10(-18) mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10% X min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

20.
Recent work has shown that macrophage-mediated cytostatic activity inhibits cell cycle traverse in G1 and/or S phase of the cell cycle without affecting late S, G2, or M phases. The present report is directed at distinguishing between such cytostatic effects on G1 phase or S phase using the accumulation of DNA polymerase alpha as a marker of G1 to S phase transition. Quiescent lymphocytes stimulated with concanavalin A undergo a semisynchronous progression from G0 to G1 to S phase with a dramatic increase in DNA polymerase alpha activity between 20 and 30 hr after stimulation. This increase in enzyme activity was inhibited, as was the accumulation of DNA, when such cells were cocultured with activated murine peritoneal macrophages during this time interval. However, if mitogen-stimulated lymphocytes were enriched for S-phase cells by centrifugal elutriation and cocultured with activated macrophages for 4-6 hr, DNA synthesis was inhibited but the already elevated DNA-polymerase activity was unaffected. Similar results were obtained when a virally transformed lymphoma cell line was substituted as the target cell in this assay. These results show that both G1 and S phase of the cycle are inhibited and suggest that inhibition of progression through the different phases may be accomplished by at least two distinct mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号