首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1) utilizes Vpu, Env, and Nef to down-modulate its primary CD4 receptor from the cell surface, and this function seems to be critical for the pathogenesis of AIDS. The physiological relevance of CD4 down-modulation, however, is currently not well understood. In the present study, we analyzed the kinetics of CD4 down-modulation and the susceptibility of HIV-1-infected T cells to superinfection using proviral HIV-1 constructs containing individual and combined defects in vpu, env, and nef and expressing red or green fluorescent proteins. T cells infected with HIV-1 mutants containing functional nef genes expressed low surface levels of CD4 from the first moment that viral gene expression became detectable. In comparison, Vpu and Env had only minor to moderate effects on CD4 during later stages of infection. Consistent with these quantitative differences, Nef inhibited superinfection more efficiently than Vpu and Env. Notably, nef alleles from AIDS patients were more effective in preventing superinfection than those derived from a nonprogressor of HIV-1 infection. Our data suggest that protection against X4-tropic HIV-1 superinfection involves both CD4-independent and CD4-dependent mechanisms of HIV-1 Nef. X4 was effectively down-regulated by simian immunodeficiency virus and HIV-2 but not by HIV-1 Nef proteins. Thus, maximal protection seems to involve an as-yet-unknown mechanism that is independent of CD4 or coreceptor down-modulation. Finally, we demonstrate that superinfected primary T cells show enhanced levels of apoptosis. Accordingly, one reason that HIV-1 inhibits CD4 surface expression and superinfection is to prevent premature cell death in order to expand the period of effective virus production.  相似文献   

2.
Tardif MR  Tremblay MJ 《Journal of virology》2005,79(21):13714-13724
Memory CD4+ T cells are considered a stable latent reservoir for human immunodeficiency virus type 1 (HIV-1) and a barrier to eradication of this retroviral infection in patients under therapy. It has been shown that memory CD4+ T cells are preferentially infected with HIV-1, but the exact mechanism(s) responsible for this higher susceptibility remains obscure. Previous findings indicate that incorporation of host-derived intercellular adhesion molecule 1 (ICAM-1) in HIV-1 increases virus infectivity. To measure the putative involvement of virus-anchored ICAM-1 in the preferential infection of memory cells by HIV-1, quiescent and activated naive and memory T-cell subsets were exposed to isogenic virions either lacking or bearing ICAM-1. Memory CD4+ T cells were found to be more susceptible than naive CD4+ T cells to infection with ICAM-1-bearing virions, as exemplified by a more important virus replication, an increase in integrated viral DNA copies, and a more efficient entry process. Interactions between virus-associated host ICAM-1 and cell surface LFA-1 under a cluster formation seem to be responsible for the preferential HIV-1 infection of the memory cell subset. Altogether, these data shed light on a potential mechanism by which HIV-1 preferentially targets long-lived memory CD4+ T cells.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) infection of the human thymus results in depletion of CD4-bearing thymocytes. This depletion is initially manifested in the immature CD4+/CD8+ thymocyte subset. To determine cellular factors involved in HIV infection in the thymus, we examined the expression of the recently identified viral coreceptor, CXCR4, on fresh human thymocytes and on human cells from SCID-hu (Thy/Liv) mice. CXCR4 is a member of the chemokine receptor family which is required along with CD4 for entry into the cell of syncytium-inducing (SI) HIV-1 strains. Our analyses show that CXCR4 expression is modulated during T-lymphoid differentiation such that immature thymocytes display an increased frequency and higher surface density of the coreceptor than do more mature cells. In addition, using an SI strain of HIV-1 which directs expression of a reporter protein on the surface of infected cells, we have found that the immature CD4+/CD8+ thymocytes that express the highest levels of both CD4 and CXCR4 are the cells that are preferentially infected and depleted by the virus in vitro. Thus, high levels of both primary receptor and coreceptor may allow efficient infection of the thymus by certain HIV-1 strains. This in part may explain the rapid disease progression seen in some HIV-infected children, where the thymus is actively involved in the production of new T lymphocytes.  相似文献   

4.
We characterized in detail the life cycle of human immunodeficiency virus type 1 (HIV-1) in human glioma H4/CD4 cells which stably express transfected CD4 DNA (B. Volsky, K. Sakai, M. Reddy, and D. J. Volsky, Virology 186:303-308, 1992). Infection of cloned H4/CD4 cells with the N1T strain of cell-free HIV-1 (HIV-1/N1T) was rapid and highly productive as measured by the initial expression of viral DNA, RNA, and protein, but all viral products declined to low levels by 14 days after infection. Chronically infected, virus-producing H4/CD4 cells could be obtained by cell cloning, indicating that HIV-1 DNA can integrate and remain expressed in these cells. The HIV-1 produced in H4/CD4 cells was noninfectious to glial cells, but it could be transmitted with low efficiency to CEM cells. Examination of viral protein composition by immunoprecipitation with AIDS serum or anti-gp120 antibody revealed that HIV-1/N1T-infected H4/CD4 cells produced all major viral proteins including gp160, but not gp120. Deglycosylation experiments with three different glycosidases determined that the absence of gp120 was not due to aberrant glycosylation of gp160, indicating a defect in gp160 proteolytic processing. Similar results were obtained in acutely and chronically infected H4/CD4 cells. To determine the generality of this HIV-1 replication phenotype in H4/CD4 cells, nine different viral clones were tested for replication in H4/CD4 cells by transfection. Eight were transiently productive like N1T, but one clone, NL4-3, established a long-lived productive infection in H4/CD4 cells, produced infectious progeny virus, and produced both gp160 and gp120. We conclude that for most HIV-1 strains tested, HIV-1 infection of H4/CD4 is restricted to a single cycle because of the defective processing of gp160, resulting in the absence of gp120 on progeny virus.  相似文献   

5.
Jurkat T-cell clones, stably expressing the human immunodeficiency virus type 1 (HIV-1) Vpr protein, exhibited an impaired susceptibility to HIV-1 infection. A marked down-modulation of surface CD4 receptors was detected in Vpr-expressing clones with respect to control cells. Likewise, a reduced CD4 expression was also observed in parental Jurkat cells infected with wild-type but not with Vpr-mutant HIV-1. Notably, Vpr-expressing clones were fully susceptible to infection with a vesicular stomatitis virus G protein-pseudotyped HIV-1 virus, indicating that a block at the level of viral entry was responsible for the inhibition of viral replication. The effect exerted by Vpr on HIV replication and CD4 expression suggests that this protein can regulate both the establishment of a productive HIV-1 infection and CD4-mediated T-cell functions.  相似文献   

6.
CD4+ central memory T cells play a critical role in the pathogenesis of simian immunodeficiency virus disease, and the CCR5 density on the surface of CD4 T cells is an important factor in human immunodeficiency virus (HIV)-1 disease progression. We hypothesized that quantifying central memory cells and CCR5 expression in the early stages of HIV-infection could provide useful prognostic information. We enrolled two different groups of acute HIV-infected subjects. One group progressed to CD4 T cell numbers below 250 cells/µl within 2 years (CD4 Low group), while the other group maintained CD4 cell counts above 450 cells/µl over 2 years (CD4 High group). We compared the CCR5 levels and percentage of CD4 subsets between the two groups during the 1st year of HIV infection. We found no differences between the two groups regarding the percentage of naïve, central memory and effector memory subsets of CD4 cells during the 1st year of HIV-1 infection. CCR5 levels on CD4+ CM subset was higher in the CD4 Low group compared with the CD4 High group during the 1st year of HIV-1 infection. High CCR5 levels on CD4 central memory cells in acute HIV infection are mostly associated with rapid disease progression. Our data suggest that low CCR5 expression on CD4 central memory cells protects CD4 cells from direct virus infection and favors the preservation of CD4+ T cell homeostasis.  相似文献   

7.
CXCR4-using human immunodeficiency virus, type 1 (HIV-1) variants emerge late in the course of infection in >40% of individuals infected with clade B HIV-1 but are described less commonly with clade C isolates. Tat is secreted by HIV-1-infected cells where it acts on both uninfected bystander cells and infected cells. In this study, we show that clade B Tat, but not clade C Tat, increases CXCR4 surface expression on resting CD4+ T cells through a CCR2b-dependent mechanism that does not involve de novo protein synthesis. The expression of plectin, a cytolinker protein that plays an important role as a scaffolding platform for proteins involved in cellular signaling including CXCR4 signaling and trafficking, was found to be significantly increased following B Tat but not C Tat treatment. Knockdown of plectin using RNA interference showed that plectin is essential for the B Tat-induced translocation of CXCR4 to the surface of resting CD4+ T cells. The increased surface CXCR4 expression following B Tat treatment led to increased function of CXCR4 including increased chemoattraction toward CXCR4-using-gp120. Moreover, increased CXCR4 surface expression rendered resting CD4+ T cells more permissive to X4 but not R5 HIV-1 infection. However, neither B Tat nor C Tat was able to up-regulate surface expression of CXCR4 on activated CD4+ T cells, and both proteins inhibited the infection of activated CD4+ T cells with X4 but not R5 HIV-1. Thus, B Tat, but not C Tat, has the capacity to render resting, but not activated, CD4+ T cells more susceptible to X4 HIV-1 infection.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) infection of T cells and cells of the monocyte/macrophage lineage requires a specific interaction between the CD4 antigen expressed on the cell surface and the HIV-1 external envelope glycoprotein (gp120). To study the association between HIV-1 infection and modulation of cell surface expression of the CD4 molecule in vivo, we examined the CD4+ T cells harboring proviral DNA obtained from HIV-1-infected individuals who had received no antiretroviral therapy for at least 90 days. Simultaneous immunophenotyping of CD4 cell surface expression and PCR-driven in situ hybridization for HIV-1 DNA were used to resolve the CD4+ T cells into distinct populations predicted upon the presence or absence of proviral DNA. Among the HIV-1-infected study subjects, the percentage of CD4+ T cells harboring proviral DNA ranged from 17.3 to 55.5%, with a mean of 40.5%. Cell surface fluorescent staining with anti-CD4 antibody directed against a non-gp120 binding site-related epitope (L120) or a conformation-dependent epitope of the gp120 binding site (Leu 3A) demonstrated either an equivalent or a 1.5- to 3-fold-lower cell surface staining intensity for the HIV-1 DNA-positive subpopulation relative to the HIV-1 DNA-negative subpopulation, respectively. These data suggest that masking or alteration of specific epitopes on the CD4 molecule occurs after viral infection.  相似文献   

9.
HIV-1 is capable of infecting many different cell types that express the CD4 molecule. In vivo and in vitro this infection is associated with profound immunologic defects. We have examined the effect of HIV-1 infection on the expression of MHC class I (MHC-I) molecules to explore the possibility that this important immune system molecule is perturbed after HIV-1 infection. Our data show that in vitro, HIV-1 infection of CD4+ PBL, and the CD4+ cell lines, CEM-E5, HT, and U937, results in decreased expression of MHC-I molecules on the cell surface. This down-modulation is transient, occurring 18 h after HIV-1 infection of CD4+ PBL and returning to normal expression by 24 h. In CEM-E5, MHC-I down-modulation occurs over the course of days, reaching its greatest decrease (40%) about the time the cells are producing the most virus. Reversal of MHC-I expression to normal levels occurs as viral production decreases. Down-regulation during the time periods examined appear to be specific for MHC-I and does not occur with other cell-surface Ag nor is it caused by selection of a preexisting cell population with low MHC-I expression. Radioimmunoprecipitation of MHC-I protein from CEM-E5 indicated that the decrease of surface MHC-I is caused by decreased total protein secondary to a decrease in the level of mRNA for MHC-I. These decreased levels of MHC-I are biologically relevant because HIV-1 infected CEM-E5 cells are less susceptible to CTL lysis determined by the use of MHC-I cytolytic T cell clones and with the use of cold target-inhibition assay.  相似文献   

10.
Prolonged immune activation drives the upregulation of multiple checkpoint receptors on the surface of virus-specific T cells, inducing their exhaustion. Reversing HIV-1-induced T cell exhaustion is imperative for efficient virus clearance; however, viral mediators of checkpoint receptor upregulation remain largely unknown. The enrichment of checkpoint receptors on T cells upon HIV-1 infection severely constrains the generation of an efficient immune response. Herein, we examined the role of HIV-1 Nef in mediating the upregulation of checkpoint receptors on peripheral blood mononuclear cells. We demonstrate that the HIV-1 accessory protein Nef upregulates cell surface levels of the checkpoint receptor T-cell immunoglobulin mucin domain-3 (Tim-3) and that this is dependent on Nef''s dileucine motif LL164/165. Furthermore, we used a bimolecular fluorescence complementation assay to demonstrate that Nef and Tim-3 form a complex within cells that is abrogated upon mutation of the Nef dileucine motif. We also provide evidence that Nef moderately promotes Tim-3 shedding from the cell surface in a dileucine motif–dependent manner. Treating HIV-1-infected CD4+ T cells with a matrix metalloprotease inhibitor enhanced cell surface Tim-3 levels and reduced Tim-3 shedding. Finally, Tim-3-expressing CD4+ T cells displayed a higher propensity to release the proinflammatory cytokine interferon-gamma. Collectively, our findings uncover a novel mechanism by which HIV-1 directly increases the levels of a checkpoint receptor on the surface of infected CD4+ T cells.  相似文献   

11.
Infection of T cells by HIV-1 can occur through binding of virus to dendritic cell (DC)-specific ICAM-3 grabbing nonintegrin (DC-SIGN) on dendritic cells and transfer of virus to CD4+ T cells. Here we show that a subset of B cells in the blood and tonsils of normal donors expressed DC-SIGN, and that this increased after stimulation in vitro with interleukin 4 and CD40 ligand, with enhanced expression of activation and co-stimulatory molecules CD23, CD58, CD80, and CD86, and CD22. The activated B cells captured and internalized X4 and R5 tropic strains of HIV-1, and mediated trans infection of T cells. Pretreatment of the B cells with anti-DC-SIGN monoclonal antibody blocked trans infection of T cells by both strains of HIV-1. These results indicate that DC-SIGN serves as a portal on B cells for HIV-1 infection of T cells in trans. Transmission of HIV-1 from B cells to T cells through this DC-SIGN pathway could be important in the pathogenesis of HIV-1 infection.  相似文献   

12.
13.
14.
During human immunodeficiency virus type 1 (HIV-1) infection, there is a strong positive correlation between CCL2 levels and HIV viral load. To determine whether CCL2 alters HIV-1 infection of resting CD4(+) T cells, we infected purified resting CD4(+) T cells after incubation with CCL2. We show that CCL2 up-regulates CXCR4 on resting CD4(+) T cells in a CCR2-dependent mechanism, and that this augmentation of CXCR4 expression by CCL2 increases the ability of these cells to be chemoattracted to CXCR4 using gp120 and renders them more permissive to X4-tropic HIV-1 infection. Thus, CCL2 has the capacity to render a large population of lymphocytes more susceptible to HIV-1 late in the course of infection.  相似文献   

15.
16.
17.
We investigated the effect of IL-10 on replication of primary CXCR4-dependent (X4) HIV-1 strains by monocyte-derived dendritic cells (DCs) and macrophages (M Phis). M Phis efficiently replicated CXCR4-dependent HIV-1 (X4 HIV-1) strains NDK and VN44, whereas low levels of p24 were detected in supernatants of infected DCs. IL-10 significantly increased X4 HIV-1 replication by DCs but blocked viral production by M Phis as determined by p24 levels and semiquantitative nested PCR. IL-10 up-regulated CXCR4 mRNA and protein expression on DCs and M Phis, suggesting that IL-10 enhances virus entry in DCs but blocks an entry and/or postentry step in M Phis. The effect of IL-10 on the ability of DCs and M Phis to transmit virus to autologous CD4(+) T lymphocytes was investigated in coculture experiments. DCs exhibited a greater ability than did M Phis to transmit a vigorous infection to CD4(+) T cells despite their very low replication capacity. IL-10 had no effect on HIV-1 replication in DC:T cell cocultures but markedly decreased viral production in M Phi:T cell cocultures. These results demonstrate that IL-10 has opposite effects on the replication of primary X4 HIV-1 strains by DCs and M Phis. IL-10 increases X4-HIV-1 replication in DCs but does not alter their capacity to transmit virus to CD4(+) T lymphocytes. These findings suggest that increased levels of IL-10 observed in HIV-1-infected patients with disease progression may favor the replication of X4 HIV-1 strains in vivo.  相似文献   

18.
To investigate whether transferrin receptor (CD71) expression is affected by acute HIV-1 infection, three different lymphoid cell lines (MT-4, SUPT-1, H9) were infected with HIV-1 and tested for surface CD71 expression after different incubation periods depending on cell survival after infection. We found that expression of surface CD71 was lower in cells infected with HIV-1 than in uninfected controls: the timing and extent of this down-modulation depended apparently on the different susceptibility of the cell lines to HIV-1 infection and cytopathogenicity. Citrate, a molecule capable of chelating iron, dose-dependently prevented down-modulation of surface CD71 in HIV-1 infected cells as well as viral cytopathic effects. We conclude that (i) expression of surface transferrin receptors is down-modulated by acute HIV-1 infection in T lymphoid cells, that (ii) this cell phenotypic modulation is associated with the cytopathic effects of the virus, and that (iii) these phenomena are modulated by iron chelation. These results support the view that iron metabolism may be an important area for interaction between HIV-1 and human cells.  相似文献   

19.
20.
Human immunodeficiency virus type 1 (HIV-1) transmission by the parenteral route is similar to mucosal transmission in the predominance of virus using the CCR5 coreceptor (R5 virus), but it is unclear whether blood dendritic cells (DCs), monocytes, or T cells are the cells initially infected. We used ex vivo HIV-1 infection of sorted blood mononuclear cells to model the in vivo infection of blood leukocytes. Using quantitative real-time PCR to detect full-length HIV-1 DNA, both sorted CD11c+ myeloid and CD11c plasmacytoid DCs were more frequently infected than other blood mononuclear cells, including CD16+ or CD14+ monocytes or resting CD4+ T cells. There was a strong correlation between CCR5 coreceptor use and preferential DC infection across a range of HIV-1 isolates. After infection of unsorted blood mononuclear cells, HIV-1 was initially detected in the CD11c+ DCs and later in other leukocytes, including clustering DCs and activated T cells. DC infection with R5 virus was productive, as shown by efficient transmission to CD4+ T cells in coculture. Blood DCs infected with HIV-1 in vitro and cultured alone expressed only low levels of multiply spliced HIV-1 RNA unless cocultured with CD4+ T cells. Early selective infection of immature blood DCs by R5 virus and upregulation of viral expression during DC-T-cell interaction and transmission provide a potential pathway for R5 selection following parenteral transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号