首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
The genome of environmental Bacillus amyloliquefaciens FZB42 harbors numerous gene clusters involved in synthesis of antifungal and antibacterial acting secondary metabolites. Five gene clusters, srf, bmy, fen, nrs, dhb, covering altogether 137 kb, direct non-ribosomal synthesis of the cyclic lipopeptides surfactin, bacillomycin, fengycin, an unknown peptide, and the iron siderophore bacillibactin. Bacillomycin and fengycin were shown to act against phytopathogenic fungi in a synergistic manner. Three gene clusters, mln, bae, and dif, with a total length of 199 kb were shown to direct synthesis of the antibacterial acting polyketides macrolactin, bacillaene, and difficidin. Both, non-ribosomal synthesis of cyclic lipopeptides and synthesis of polyketides are dependent on the presence of a functional sfp gene product, 4'-phosphopantetheinyl transferase, as evidenced by knockout mutation of the sfp gene resulting in complete absence of all those eight compounds. In addition, here we present evidence that a gene cluster encoding enzymes involved in synthesis and export of the antibacterial acting dipeptide bacilysin is also functional in FZB42. In summary, environmental FZB42 devoted about 340 kb, corresponding to 8.5% of its total genetic capacity, to synthesis of secondary metabolites useful to cope with other competing microorganisms present in the plant rhizosphere.  相似文献   

3.
The environmental strain Bacillus amyloliquefaciens FZB42 promotes plant growth and suppresses plant pathogenic organisms present in the rhizosphere. We sampled sequenced the genome of FZB42 and identified 2,947 genes with >50% identity on the amino acid level to the corresponding genes of Bacillus subtilis 168. Six large gene clusters encoding nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) occupied 7.5% of the whole genome. Two of the PKS and one of the NRPS encoding gene clusters were unique insertions in the FZB42 genome and are not present in B. subtilis 168. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed expression of the antibiotic lipopeptide products surfactin, fengycin, and bacillomycin D. The fengycin (fen) and the surfactin (srf) operons were organized and located as in B. subtilis 168. A large 37.2-kb antibiotic DNA island containing the bmy gene cluster was attributed to the biosynthesis of bacillomycin D. The bmy island was found inserted close to the fen operon. The responsibility of the bmy, fen, and srf gene clusters for the production of the corresponding secondary metabolites was demonstrated by cassette mutagenesis, which led to the loss of the ability to produce these peptides. Although these single mutants still largely retained their ability to control fungal spread, a double mutant lacking both bacillomycin D and fengycin was heavily impaired in its ability to inhibit growth of phytopathogenic fungi, suggesting that both lipopeptides act in a synergistic manner.  相似文献   

4.
In previous studies, Bacillus amyloliquefaciens C06 has been proven to be effective in controlling brown rot of stone fruit caused by Monilinia fructicola. When tested in vitro, cell-free filtrate of B. amyloliquefaciens C06 significantly inhibited mycelial growth and conidial germination of the fungal pathogen. This study aimed to determine the role of the antifungal compound(s) in the cell-free filtrate of B. amyloliquefaciens C06 by an approach combining a DNA-based suppression subtractive hybridization (SSH) method with MALDI-TOF-MS analysis. It was demonstrated that B. amyloliquefaciens C06 harbored two genes, bmyC and fenD, involved in biosynthesis of bacillomycin D and fengycin, two lipopeptides belonging to the iturin and fengycin family, respectively. To determine the roles of bacillomycin D and fengycin of B. amyloliquefaciens C06 in suppressing M. fructicola, the mutants of B. amyloliquefaciens C06 deficient in producing bacillomy- cin D, fengycin or both were constructed, and evaluated in vitro together with the wild-type B. amyloliquefaciens C06. The results indicated that bacillomycin D and fengycin jointly contributed to the inhibition of conidial germination of M. fructicola, and fengycin played a major role in suppressing mycelial growth of the fungal pathogen.  相似文献   

5.
Bacillus amyloliquefaciens FZB42 is a Gram-positive, plant-associated bacterium, which stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. Its 3,918-kb genome, containing an estimated 3,693 protein-coding sequences, lacks extended phage insertions, which occur ubiquitously in the closely related Bacillus subtilis 168 genome. The B. amyloliquefaciens FZB42 genome reveals an unexpected potential to produce secondary metabolites, including the polyketides bacillaene and difficidin. More than 8.5% of the genome is devoted to synthesizing antibiotics and siderophores by pathways not involving ribosomes. Besides five gene clusters, known from B. subtilis to mediate nonribosomal synthesis of secondary metabolites, we identified four giant gene clusters absent in B. subtilis 168. The pks2 gene cluster encodes the components to synthesize the macrolactin core skeleton.  相似文献   

6.
将强启动子P43与透明颤菌血红蛋白基因(vgb)通过重叠延伸PCR进行融合,克隆到芽孢杆菌整合表达载体pDG1730中,重组表达载体pDG-P43vgb转化促生防病解淀粉芽孢杆菌FZB42,Wsetern-Blot和CO差光谱分析表明重组菌株FZB42-VHb表达了有活性的VHb蛋白,VHb的表达对重组菌株菌体的生长及抗菌脂肽的产生都有促进作用.在相同培养条件下,重组菌最大菌体密度比原始菌株提高了14.49 %,抗菌脂肽fengycin的产量提高了1.74倍,抗菌脂肽surfactin的产量提高了3.14倍.  相似文献   

7.
Bacillus species are well known for their ability to control plant diseases through various mechanisms, including the production of secondary metabolites. Bacillus subtilis DFH08, an antagonist of Fusarium graminearum, and other Bacillus spp. that are antagonists of common fungal pathogens of canola were screened for peptide synthetase biosynthetic genes of fengycin and bacillomycin D. Specific polymerase chain reaction (PCR) primers identified B. subtilis strains DFH08 and 49 for the presence of the fenD gene of the fengycin operon. Bacillus cereus DFE4, Bacillus amyloliquefaciens strains DFE16 and BS6, and B. subtilis 49 were identified for the presence of the bamC gene of the bacillomycin D synthetase biosynthetic operon. Both fengycin and bacillomycin D were detected in the culture extract of strain Bs49, characterized through MALDI-TOF-MS (matrix-assisted laser desorption ionization - time of flight - mass spectrometry), and their antifungal activities demonstrated against F. graminearum and Sclerotinia sclerotiorum. This study designed and used specific PCR primers for the detection of potential fengycin- and bacillomycin D-producing bacterial antagonists and confirmed the molecular detection with the biochemical detection of the corresponding antibiotic produced. This is also the first report of a B. cereus strain (DFE4) to have bacillomycin D biosynthetic genes. Bacteria that synthesize these lipopeptides could act as natural genetic sources for genetic engineering of the peptide synthetases for production of novel peptides.  相似文献   

8.
Here we report on a novel thiazole/oxazole-modified microcin (TOMM) from Bacillus amyloliquefaciens FZB42, a Gram-positive soil bacterium. This organism is well known for stimulating plant growth and biosynthesizing complex small molecules that suppress the growth of bacterial and fungal plant pathogens. Like microcin B17 and streptolysin S, the TOMM from B. amyloliquefaciens FZB42 undergoes extensive posttranslational modification to become a bioactive natural product. Our data show that the modified peptide bears a molecular mass of 1,335 Da and displays antibacterial activity toward closely related Gram-positive bacteria. A cluster of 12 genes that covers ~10 kb is essential for the production, modification, export, and self-immunity of this natural product. We have named this compound plantazolicin (PZN), based on the association of several producing organisms with plants and the incorporation of azole heterocycles, which derive from Cys, Ser, and Thr residues of the precursor peptide.  相似文献   

9.
Zhang G  Deng A  Xu Q  Liang Y  Chen N  Wen T 《Journal of bacteriology》2011,193(12):3142-3143
Here, we report the complete genome sequence of Bacillus amyloliquefaciens TA208, a strain for industrial production of guanosine and synthesis of ribavirin by assimilation of formamide. Comparison of its genome sequence with those of strains DSM7 and FZB42 revealed horizontal gene transfer represented by unique prophages and restriction-modification systems and indicated significant accumulation of guanosine.  相似文献   

10.
11.
Phytohormone-like acting compounds previously have been suggested to be involved in the phytostimulatory action exerted by the plant-beneficial rhizobacterium Bacillus amyloliquefaciens FZB42. Analyses by high-performance liquid chromatography and gas chromatography-mass spectrometry performed with culture filtrates of FZB42 demonstrated the presence of indole-3-acetic acid (IAA), corroborating it as one of the pivotal plant-growth-promoting substances produced by this bacterium. In the presence of 5 mM tryptophan, a fivefold increase in IAA secretion was registered. In addition, in the trp auxotrophic strains E101 (deltatrpBA) and E102 (deltatrpED), and in two other strains bearing knockout mutations in genes probably involved in IAA metabolism, E103 (deltaysnE, putative IAA transacetylase) and E105 (deltayhcX, putative nitrilase), the concentration of IAA in the culture filtrates was diminished. Three of these mutant strains were less efficient in promoting plant growth, indicating that the Trp-dependent synthesis of auxins and plant growth promotion are functionally related in B. amyloliquefaciens.  相似文献   

12.
13.
14.
The response regulator DegU and its cognate kinase DegS constitute a two‐component system in Bacillus subtilis that regulates many cellular processes, including exoprotease production and competence development. Using DNA footprint assay, gel shift assay and mutational analyses of P3degUlacZ fusions, we showed that phosphorylated DegU (DegU‐P) binds to two direct repeats (DR1 and DR2) of the consensus DegU‐binding sequence in the P3degU promoter. The alteration of chromosomal DR2 severely decreased degU expression, demonstrating its importance in positive autoregulation of degU. Observation of DegU protein levels suggested that DegU is degraded. Western blot analysis of DegU in disruption mutants of genes encoding various ATP‐dependent proteases strongly suggested that ClpCP degrades DegU. Moreover, when de novo protein synthesis was blocked, DegU was rapidly degraded in the wild‐type but not in the clpC and clpP strains, and DegU with a mutated phosphorylation site was much stable. These results suggested preferential degradation of DegU‐P by ClpCP, but not of unphosphorylated DegU. We confirmed that DegU‐P was degraded preferentially using an in vitro ClpCP degradation system. Furthermore, a mutational analysis showed that the N‐terminal region of DegU is important for proteolysis.  相似文献   

15.
目的:解淀粉芽孢杆菌Q-426在其生长过程中能够产生芬枯草菌素、依枯草菌素、枯草杆菌素等多种脂肽类抗菌物质。利用实时荧光定量PCR的方法考察细菌群体感应信号分子二酮哌嗪类化合物(diketopiperazines, DKPs)对脂肽类抗菌物质合成的调控作用。方法:当Q-426菌进入对数生长期中期,向发酵液中加入终浓度为5 mg/L的DKPs,并继续培养至48 h,并利用实时荧光定量PCR的方法进行抗菌物质mRNA表达水平的定量分析。结果:二酮哌嗪类化合物能够抑制抗菌活性物质相关基因的表达。  相似文献   

16.
17.
【目的】从小麦根际土壤分离鉴定一株赤霉病拮抗菌,对该菌产的抗菌素进行生物学性质研究、种类鉴定和抑菌实验。【方法】利用牛津杯法和光照培养箱实验对其抑菌活性进行测定,通过16S r RNA基因序列分析对目标菌株的种属进行初步鉴定,根据抗菌素相关基因进行PCR扩增和测序,利用在线软件Pro Param tool和TMHMM对编码蛋白进行生物信息学分析。【结果】7M1菌体和抗菌素对禾谷镰刀菌的抑菌圈直径分别为16.33±0.13 mm和15.43±0.21 mm,16S r RNA基因序列分析结果显示其为芽孢杆菌,并与解淀粉芽孢杆菌具有较近的亲缘关系,菌株7M1抗菌素对小麦赤霉病的温室防治效果为76.41%,而且热稳定性好,可被蛋白酶K、胰蛋白酶、胃蛋白酶降解,在p H 5.0-10.0有较好的抑菌活性,但是紫外线辐射会降低其抑菌活性。菌株7M1含有bac AB、itu C、bam D 3种基因,通过与Gen Bank中相关的抗菌素基因进行比对,发现其编码的氨基酸序列与Gen Bank库中的芽孢杆菌溶素、伊枯草菌素和杆菌抗霉素D等抗菌素的相似性达到99%。bac AB编码蛋白和itu C编码蛋白是稳定蛋白,bam D编码蛋白是不稳定蛋白,此外,3种基因的编码产物不具有明显的跨膜结构。【结论】从该菌发酵液提取的抗菌素有很好的抗禾谷镰刀菌活性而且性质稳定,因而在小麦赤霉病的生物防治中具有潜在的应用价值。  相似文献   

18.
Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU∼P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU∼P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9.  相似文献   

19.
We screened the putative rap-phr (response regulator aspartyl-phosphate phosphatase-phosphatase regulator) systems identified in the Bacillus subtilis genome for a rap gene that affects aprE (alkaline protease gene) expression by using a multicopy plasmid. We found that rapG was involved in the regulation of aprE, which belongs to the regulon of DegU, the response regulator of the DegS-DegU two-component system. Disruption of rapG and phrG resulted in enhancement and reduction of aprE-lacZ expression, respectively, suggesting that PhrG inhibits RapG activity. Addition of 1-30 nM of a synthetic pentapeptide (PhrG; NH2-EKMIG-COOH) to the phrG disruptant completely rescued aprE-lacZ expression, indicating that the PhrG peptide is indeed involved in aprE-lacZ expression. Surprisingly, either introduction of multicopy phrG or addition of the PhrG peptide at high concentrations (100-300 nM) to the phrG cells decreased aprE-lacZ expression. These results are reminiscent of the previous observation that at higher concentrations the PhrC peptide inhibits srfA-lacZ expression directed by ComA, the regulator of the ComP-ComA two-component system. Because the Rap proteins belong to a family of aspartyl protein phosphatases, we tried to investigate the possible influence of RapG on dephosphorylation of DegU-P (phosphorylated DegU) in vitro. RapG, however, did not affect dephosphorylation of DegU-P under the adopted experimental conditions. Therefore, we hypothesized that RapG might inhibit the binding activity of DegU to the target promoters. We analysed the interaction of DegU and RapG using the aprE promoter and another target, a comK promoter. Gel shift analysis revealed that RapG served as the inhibitor of DegU binding to the promoter regions of aprE and comK and that this inhibition was counteracted by the PhrG peptide.  相似文献   

20.
氮源和碳源对解淀粉芽孢杆菌Q-426抗菌脂肽合成的影响   总被引:2,自引:0,他引:2  
微生物来源的环状脂肽在生物农药以及医学领域极具应用潜力。通过测量抑菌活性并利用反相高效液相色谱(RP-HPLC),液相质谱联用(HPLC-MS)和串联质谱(MS/MS)技术检测抗菌脂肽组分的变化研究了氮(N)源、碳(C)源和培养基中的初始pH值对解淀粉芽孢杆菌Q-426菌株中抗菌脂肽bacillomycin D和fengycins合成的影响,从而为进一步研究它们生物合成的基因调控以及更有目的性提高产量提供理论依据。结果表明:L-组氨酸、L-赖氨酸、甘油、山梨醇以及培养基中的[OH]-均能促进脂肽bacillomycin D的合成,但它们在该实验菌株抗菌脂肽bacillomycinD合成途径中的调控靶点有所不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号