首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylinositol (PtdIns) synthase 1 from the plant Arabidopsis thaliana has been expressed in Escherichia coli in order to study the synthetic capacities of the enzyme. Analysis of the total fatty acid content of the bacteria shows that PtdIns synthase activity does not have a profound effect on the proportions of the different fatty acids produced, even if the presence of an extra acidic phospholipid leads to a global reduction of the lipid content. A closer analysis carried out on individual phospholipids reveals a global fatty acid composition almost unchanged in the two major bacterial lipids phosphatidylethanolamine (PtdEtn) and phosphatidylglycerol (PtdGro). Phosphatidylinositol has a very unusual composition that shows the ability of the plant enzyme to use CDP-diacylglycerol molecular species absent from plants. We identified the various PtdIns molecular species. They represent a pool of the major molecular species of PtdEtn and PtdGro. These results, together with the determination of the apparent affinity constants of AtPIS1 for myo-inositol and CDP-diacylglycerol, allow us to discuss some of the constraints of PtdIns synthesis in plants in terms of specificity, which will depend on the subcellular localization of the protein.  相似文献   

2.
CMP is known to activate phosphatidylinositol (PtdIns)/inositol (Ins) base exchange and has been reported to activate reversal of PtdIns synthase also. Because it is possible that PtdIns synthase acting in the reverse direction, followed by re-incorporation of ambient Ins, could be responsible for base-exchange activity, we characterized these processes in rat pituitary GH3 cells. In permeabilized GH3 cells prelabelled with [3H]Ins and incubated in buffer with LiCl but without added Ins, CMP stimulated rapid accumulation of [3H]Ins and decreases in [3H]PtdIns; the Km for CMP was 1.7 mM. CDP and CTP were less effective, whereas 2'-CMP, 3'-CMP, other nucleoside monophosphates and cytidine did not influence this process. In permeabilized cells prelabelled to isotopic equilibrium with [3H]Ins and [32P]Pi, CMP stimulated decreases in both the 32P and 3H labelling of PtdIns, but did not increase that of [32P]phosphatidic acid. These findings demonstrate that in the absence of added Ins the effect of CMP is not via activation of base exchange nor via a phospholipase D, but by reversal of PtdIns synthase. In permeabilized cells prelabelled with [3H]Ins and [32P]Pi, unlabelled Ins inhibited loss of 32P labelling of PtdIns caused by CMP while markedly stimulating loss of 3H labelling of PtdIns and release of [3H]Ins. These data demonstrate that Ins inhibits reversal of PtdIns synthase, but stimulates base exchange. We conclude that in GH3 cells reversal of PtdIns synthase and PtdIns/Ins base exchange are both stimulated by CMP, but are distinct processes.  相似文献   

3.
Phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] of turkey erythrocytes were labelled by using either [32P]Pi or [3H]inositol. Although there was little basal release of inositol phosphates from membranes purified from labelled cells, in the presence of guanosine 5'-[gamma-thio]triphosphate (GTP[S]) the rate of accumulation of inositol bis-, tris- and tetrakis-phosphate (InsP2, InsP3 and InsP4) was increased 20-50-fold. The enhanced rate of accumulation of 3H-labelled inositol phosphates was linear for up to 20 min; owing to decreases in 32P specific radioactivity of phosphoinositides during incubation of membranes with unlabelled ATP, the accumulation of 32P-labelled inositol phosphates was linear for only 5 min. In the absence of ATP and a nucleotide-regenerating system, no InsP4 was formed, and the overall inositol phosphate response to GTP[S] was decreased. Analyses of phosphoinositides during incubation with ATP indicated that interconversions of PtdIns to PtdIns4P and PtdIns4P to PtdIns(4,5)P2 occurred to maintain PtdIns(4,5)P2 concentrations; GTP[S]-induced inositol phosphate formation was accompanied by a corresponding decrease in 32P- and 3H-labelled PtdIns, PtdIns4P and PtdIns(4,5)P2. In the absence of ATP, only GTP[S]-induced decreases in PtdIns(4,5)P2 occurred. Since inositol monophosphate was not formed under any condition, PtdIns is not a substrate for the phospholipase C. The production of InsP2 was decreased markedly, but not blocked, under conditions where Ins(1,4,5)P3 5-phosphomonoesterase activity in the preparation was inhibited. Thus the predominant substrate of the GTP[S]-activated phospholipase C of turkey erythrocyte membranes is PtdIns(4,5)P2. Ins(1,4,5)P3 was the major product of this reaction; only a small amount of Ins(1:2-cyclic, 4,5)P3 was released. The effects of ATP on inositol phosphate formation apparently involve the contributions of two phenomena. First, the P2-receptor agonist 2-methylthioadenosine triphosphate (2MeSATP) greatly increased inositol phosphate formation and decreased [3H]PtdIns4P and [3H]PtdIns(4,5)P2 in the presence of a low (0.1 microM) concentration of GTP[S]. ATP over the concentration range 0-100 microM produced effects in the presence of 0.1 microM-GTP[S] essentially identical with those observed with 2MeSATP, suggesting that the effects of low concentrations of ATP are also explained by a stimulation of P2-receptors. Higher concentrations of ATP also increase inositol phosphate formation, apparently by supporting the synthesis of substrate phospholipids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Phosphatidylinositol-inositol exchange in a rabbit lung   总被引:3,自引:0,他引:3  
A microsomal fraction prepared from rabbit lung tissue was found to catalyze CDPdiacylglycerol-independent incorporation of [3H]inositol into phosphatidylinositol. This incorporation resulted from CMP-dependent phosphatidylinositol-inositol exchange and did not constitute a net synthesis of phosphatidylinositol. The phosphatidylinositol-inositol exchange activity was distinct from the phospholipid-base exchange enzymes and was specific for inositol. Optimal in vitro phosphatidylinositol-inositol exchange activity was observed at pH 8.5--8.8 and either Mn2+ or Mg2+ was essential for activity. Mercaptoethanol stimulated phosphatidylinositol-inositol exchange and Hg2+ inhibited this activity. In the absence of CMP, no phosphatidylinositol-inositol exchange was observed. CDP (and to a smaller extent CTP) also supported phosphatidylinositol-inositol exchange and this appeared to occur via the generation of CMP during incubations. The apparent Km values of the phosphatidylinositol-inositol exchange enzyme for CMP and inositol were 0.4 mM and 11 microM, respectively. When CDPdiacylglycerol was present at a concentration optimal for CDPdiacylglycerol : inositol transferase activity, CMP-dependent phosphatidylinositol-inositol exchange activity was still observed. However, in the presence of Hg2+ CDPdiacylglycerol inhibited phosphatidylinositol-inositol exchange activity. Several properties of the phosphatidylinositol-inositol exchange enzyme resemble those of CDPdiacylglycerol : inositol transferase, but the two enzymes appear distinct on the basis of different degrees of inhibition by either Ca2+, Hg/+ or heat, and on the basis of different changes in activity during lung development.  相似文献   

5.
Recent work from our laboratory demonstrated that phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), are required to maintain the structural integrity of the Golgi apparatus. To investigate the role of these lipids in regulating Golgi structure and function, we developed a novel assay to follow the release of post-Golgi vesicles. Isolated rat liver Golgi membranes were incubated with [(3)H]CMP sialic acid to radiolabel endogenous soluble and membrane glycoproteins present in the late Golgi and trans-Golgi network. The release of post-Golgi secretory vesicles was determined by measuring incorporation of (3)H-labeled proteins into a medium speed supernatant. Vesicle budding was dependent on temperature, cytosol, energy and time. Electron microscopy of Golgi fractions prior to and after incubation demonstrated that the stacked Golgi cisternae generated a heterogeneous population of vesicles (50- to 350-nm diameter). Inhibition of phospholipase D-mediated PA synthesis, by incubation with 1-butanol, resulted in the complete fragmentation of the Golgi membranes in vitro into 50- to 100-nm vesicles; this correlated with diminished PtdIns(4,5)P(2) synthesis. Following alcohol washout, PA synthesis resumed and in the presence of cytosol PtdIns(4,5)P(2) synthesis was restored. Most significantly, under these conditions the fragmented Golgi elements reformed into flattened cisternae and the re-assembled Golgi supported vesicle release. These data demonstrate that inositol phospholipid synthesis is essential for the structure and function of the Golgi apparatus.  相似文献   

6.
Addition of phytohemagglutinin to JURKAT cells, a human T-cell leukemia line, induced a rapid breakdown of phosphatidylinositol 4,5-bisphosphate (and may also be phosphatidylinositol 4-phosphate) and an accumulation of phosphatidic acid. The accumulation and disappearance of the various molecular species of phosphatidic acid, diacylglycerol and phosphatidylinositol (PtdIns) in response to phytohemagglutinin was studied in JURKAT cells. The cells were prelabeled with [2-3H]glycerol for 2 days and 3H-labeled lipids were isolated from the cells after incubation for 2 min at 37 degrees C in the absence or in the presence of phytohemagglutinin. The isolated 3H-labeled lipids were separated into individual molecular species by reverse-phase HPLC after conversion to their 1,2-[3H]diacylglycerol acetate derivatives either by acetolysis or by acetylation. Stimulation with phytohemagglutinin induced a 2-fold increase in [3H]phosphatidic acid. The molecular species of the accumulated [3H]phosphatidic acid consisted of polyenoic species, which were almost absent in the [3H]phosphatidic acid of the unstimulated cells. Stearoylarachidonoyl species of [3H]phosphatidic acid accumulated most prominently. Although an accumulation of [3H]diacylglycerol was hardly measurable in the phytohemagglutinin-stimulated cells, the HPLC analysis of the molecular species of [3H]diacylglycerol showed a 2-fold increase in the stearoylarachidonoyl species in the stimulated cells. Stimulation with phytohemagglutinin had almost no effect on the composition of molecular species of [3H]PtdIns. The stearoylarachidonyl species is the most abundant molecular species of PtdIns in JURKAT cells. These results suggest that the [3H]diacylglycerol moiety of [3']phosphatidic acid originates from inositol lipid(s). The results also suggest a rapid and preferential phosphorylation of the diacylglycerol formed by receptor-stimulated hydrolysis of inositol lipid(s).  相似文献   

7.
The metabolism of the inositol lipids and phosphatidic acid in rat lacrimal acinar cells was investigated. The muscarinic cholinergic agonist methacholine caused a rapid loss of 15% of [32P]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and a rapid increase in [32P]phosphatidic acid (PtdA). Chemical measurements indicated that the changes in 32P labelling of these lipids closely resembled changes in their total cellular content. Chelation of extracellular Ca2+ with excess EGTA caused a significant decrease in the PtdA labelling and an apparent loss of PtdIns(4,5)P2 breakdown. The calcium ionophores A23187 and ionomycin provoked a substantial breakdown of [32P]PtdIns(4,5)P2 and phosphatidylinositol 4-phosphate (PtdIns4P); however, a decrease in [32P]PtdA was also observed. Increases in inositol phosphate, inositol bisphosphate and inositol trisphosphate were observed in methacholine-stimulated cells, and this increase was greatly amplified in the presence of 10 mM-LiCl; alpha-adrenergic stimulation also caused a substantial increase in inositol phosphates. A23187 provoked a much smaller increase in the formation of inositol phosphates than did either methacholine or adrenaline. Experiments with excess extracellular EGTA and with a protocol that eliminates intracellular Ca2+ release indicated that the labelling of inositol phosphates was partially dependent on the presence of extracellular Ca2+ and independent of intracellular Ca2+ mobilization. Thus, in the rat lacrimal gland, there appears to be a rapid phospholipase C-mediated breakdown of PtdIns(4,5)P2 and a synthesis of PtdA, in response to activation of receptors that bring about an increase in intracellular Ca2+. The results are consistent with a role for these lipids early in the stimulus-response pathway of the lacrimal acinar cell.  相似文献   

8.
alpha-Actinin is an actin bundling protein that regulates cell adhesion by directly linking actin filaments to integrin adhesion receptors. Phosphatidylinositol (4,5)-diphosphate (PtdIns (4,5)-P(2)) and phosphatidylinositol (3,4,5)-triphosphate (PtdIns (3,4,5)-P(3)) bind to the calponin homology 2 domain of alpha-actinin, regulating its interactions with actin filaments and integrin receptors. In this study, we examine the mechanism by which phosphoinositide binding regulates alpha-actinin function using mass spectrometry to monitor hydrogen-deuterium (H/D) exchange within the calponin homology 2 domain. The overall level of H/D exchange for the entire protein showed that PtdIns (3,4,5)-P(3) binding alters the structure of the calponin homology 2 domain increasing deuterium incorporation, whereas PtdIns (4,5)-P(2) induces changes in the structure decreasing deuterium incorporation. Analysis of peptic fragments from the calponin homology 2 domain showed decreased local H/D exchange within the loop region preceding helix F with both phosphoinositides. However, the binding of PtdIns (3,4,5)-P(3) also induced increased exchange within helix E. This suggests that the phosphate groups on the fourth and fifth position of the inositol head group of the phosphoinositides constrict the calponin homology 2 domain, thereby altering the orientation of actin binding sequence 3 and decreasing the affinity of alpha-actinin for filamentous actin. In contrast, the phosphate group on the third position of the inositol head group of PtdIns (3,4,5)-P(3) perturbs the calponin homology 2 domain, altering the interaction between the N and C terminus of the full-length alpha-actinin antiparallel homodimer, thereby disrupting bundling activity and interaction with integrin receptors.  相似文献   

9.
1. By rapid fractionation of blood platelet lysates on Percoll density gradients at alkaline pH (9.6), a very pure plasma-membrane fraction was obtained, as well as discrimination between endoplasmic reticulum and lysosomes. 2. Labelling of intact platelets with [32P]Pi followed by subcellular fractionation showed an exclusive localization of all inositol lipids in the plasma membrane. 3. Preincubation of whole platelets with myo-[3H]inositol in a buffer containing 1 mM-MnCl2 allowed incorporation of the label into PtdIns (phosphatidylinositol) of both plasma and endoplasmic-reticulum membrane, whereas [3H]PtdIns4P (phosphatidylinositol 4-phosphate) and [3H]PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) were exclusively found on the plasma membrane. 4. It is concluded that PtdIns4P and PtdIns(4,5)P2 are exclusively localized in the plasma membrane, whereas PtdIns is present in both plasma and endoplasmic-reticulum membranes. This could provide an explanation for previously reported data on hormone-sensitive and -insensitive inositol lipid pools.  相似文献   

10.
Phosphoinositides play a central role in the control of several cellular events including actin cytoskeleton organization. Here we show that, upon infection of epithelial cells with the Gram-negative pathogen Shigella flexneri, the virulence factor IpgD is translocated directly into eukaryotic cells and acts as a potent inositol 4-phosphatase that specifically dephosphorylates phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] into phosphatidylinositol 5-monophosphate [PtdIns(5)P] that then accumulates. Transfection experiments indicate that the transformation of PtdIns(4,5)P(2) into PtdIns(5)P by IpgD is responsible for dramatic morphological changes of the host cell, leading to a decrease in membrane tether force associated with membrane blebbing and actin filament remodelling. These data provide the molecular basis for a new mechanism employed by a pathogenic bacterium to promote membrane ruffling at the entry site.  相似文献   

11.
To understand the molecular basis of granule release from platelets, we examined the role of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) in alpha-granule secretion. Streptolysin O-permeabilized platelets synthesized PtdIns(4,5)P(2) when incubated in the presence of ATP. Incubation of streptolysin O-permeabilized platelets with phosphatidylinositol-specific phospholipase C reduced PtdIns(4,5)P(2) levels and resulted in a dose- and time-dependent inhibition of Ca(2+)-induced alpha-granule secretion. Exogenously added PtdIns(4,5)P(2) inhibited alpha-granule secretion, with 80% inhibition at 50 microm PtdIns(4,5)P(2). Nanomolar concentrations of wortmannin, 33.3 microm LY294002, and antibodies directed against PtdIns 3-kinase did not inhibit Ca(2+)-induced alpha-granule secretion, suggesting that PtdIns 3-kinase is not involved in alpha-granule secretion. However, micromolar concentrations of wortmannin inhibited both PtdIns(4,5)P(2) synthesis and alpha-granule secretion by approximately 50%. Antibodies directed against type II phosphatidylinositol-phosphate kinase (phosphatidylinositol 5-phosphate 4-kinase) also inhibited both PtdIns(4,5)P(2) synthesis and Ca(2+)-induced alpha-granule secretion by approximately 50%. These antibodies inhibited alpha-granule secretion only when added prior to ATP exposure and not when added following ATP exposure, prior to Ca(2+)-mediated triggering. The inhibitory effects of micromolar wortmannin and anti-type II phosphatidylinositol-phosphate kinase antibodies were additive. These results show that PtdIns(4,5)P(2) mediates platelet alpha-granule secretion and that PtdIns(4,5)P(2) synthesis required for Ca(2+)-induced alpha-granule secretion involves the type II phosphatidylinositol 5-phosphate 4-kinase-dependent pathway.  相似文献   

12.
The nature of reactions catalysed by yeast phosphatidylinositol synthase expressed in E. coli has been investigated. The single enzyme is shown to carry both CDP-diacylglycerol-dependent incorporation of inositol into phosphatidylinositol (Km for inositol of 0.090 mM) and a CDP-diacylglycerol-independent exchange reaction between phosphatidylinositol and inositol (Km for inositol of 0.066 mM). The exchange reaction and reversal of phosphatidylinositol synthase were both stimulated by CMP, but had different optimum pH and requirements for substrates. These results suggest that CMP-stimulated exchange and CMP-dependent reverse reactions are distinct processes catalysed by the same enzyme. phosphatidylinositol synthase.  相似文献   

13.
Micromolar concentrations of CMP produced a large increase in Mn2+-dependent phosphatidylinositol:myo-inositol exchange activity in isolated nerve endings or synaptosomes. The apparent Km for CMP was 2 microM, and that for myo-inositol was 38 microM. Only cytidine nucleotides were capable of enhancing activity, and this effect is probably specific for CMP, because the synaptosomal preparation rapidly converted CTP or CDP to CMP. Manganese did not affect the uptake of myo-inositol into the synaptosomal cytosolic fraction or myo-inositol levels. Determinations of myo-inositol specific activity showed that the Mn2+-enhanced labeling of phosphatidylinositol was not accompanied by a decrease of label content in free myo-inositol. This lack of an effect on intrasynaptosomal myo-inositol and the dependence of exchange on cytidine nucleotides whereas cytidine itself was previously found to be without effect show that for the bulk of Mn2+-dependent exchange activity, it is the myo-inositol in the incubation medium that is being directly incorporated into membrane-bound phosphatidyl-inositol. Because CMP dependence is the hallmark of exchange catalyzed by CDP-diacylglycerol:inositol phosphatidyl transferase, this enzyme is likely to be responsible for most of the exchange activity in synaptosomes. The strong affinity of this exchange system for CMP suggests that endogenous levels of this nucleotide might support Mn2+-dependent exchange in the absence of added nucleotide.  相似文献   

14.
P-Rex1 is a guanine-nucleotide exchange factor (GEF) for the small GTPase Rac. We have investigated here the mechanisms of stimulation of P-Rex1 Rac-GEF activity by the lipid second messenger phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) and the Gbetagamma subunits of heterotrimeric G proteins. We show that a P-Rex1 mutant lacking the PH domain (DeltaPH) cannot be stimulated by PtdIns(3,4,5)P3, which implies that the PH domain confers PtdIns(3,4,5)P3 regulation of P-Rex1 Rac-GEF activity. Consistent with this, we found that PtdIns(3,4,5)P3 binds to the PH domain of P-Rex1 and that the DH/PH domain tandem is sufficient for PtdIns(3,4,5)P3-stimulated P-Rex1 activity. The Rac-GEF activities of the DeltaPH mutant and the DH/PH domain tandem can both be stimulated by Gbetagamma subunits, which infers that Gbetagamma subunits regulate P-Rex1 activity by binding to the catalytic DH domain. Deletion of the DEP, PDZ, or inositol polyphosphate 4-phosphatase homology domains has no major consequences on the abilities of either PtdIns(3,4,5)P3 or Gbetagamma subunits to stimulate P-Rex1 Rac-GEF activity. However, the presence of any of these domains impacts on the levels of basal and/or stimulated P-Rex1 Rac-GEF activity, suggesting that there are important functional interactions between the DH/PH domain tandem and the DEP, PDZ, and inositol polyphosphate 4-phosphatase homology domains of P-Rex1.  相似文献   

15.
Treatment of GH3 cells with thyrotropin-releasing hormone (TRH) for periods up to 60 min resulted in a prolonged reduction in the cellular content of phosphatidylinositol (PtdIns) with no lasting change in the levels of the other inositol-containing phospholipids. Accompanying this was a maintained increase in the GH3 cell 1,2-diacylglycerol content and a slower decline in the level of cellular triacylglycerol. When the cells were suspended in lithium-containing balanced salt solution for 30 min (in the absence of exogenous myo-inositol), there was a 15% decrease in GH3 cell inositol levels. This was associated with a small, but significant, increase in the cellular content of phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) and 1,2-diacylglycerol. Addition of TRH to cells suspended in lithium-containing medium depleted cellular inositol levels by around 65% within 30 min. By this time, there was also a 50% reduction in the cellular content of PtdIns and a 20% reduction in phosphatidylinositol 4-phosphate (PtdIns4P). Control levels of PtdIns4,5P2 were maintained in the combined presence of TRH and lithium. Under those conditions, TRH no longer depleted cellular triacylglycerol and there was a marked increase in the ability of TRH to elevate the GH3 cell content of 1,2-diacylglycerol. The effect of TRH on the cellular content of phosphatidic acid was not altered by the presence of lithium. The results show, firstly, that when PtdIns resynthesis is inhibited by lithium-induced inositol depletion, its glycerol backbone accumulates, at least in part, in 1,2-diacylglycerol and, secondly, that GH3 cells preserve their cellular levels of PtdIns4,5P2 in the face of a considerable reduction in the cellular content of PtdIns.  相似文献   

16.
Inostamycin, a novel microbial secondary metabolite, inhibited [3H]inositol and 32P1 incorporation into phosphatidylinositol (PtdIns) induced by epidermal growth factor (EGF) in cultured A431 cells, the IC50 being 0.5 micrograms/ml, without inhibiting macromolecular synthesis. The drug inhibited cellular inositol phosphate formation only when it was added at the same time as labeled inositol. It was found to inhibit in vitro CDP-DG:inositol transferase activity of the A431 cell membrane, the IC50 being about 0.02 micrograms/ml. It did not inhibit tyrosine kinase, PtdIns phospholipase C, or PtdIns kinase. Therefore, inhibition of PtdIns turnover by inostamycin must be due to the inhibition of CDP-DG:inositol transferase. Thus, inostamycin is a novel inhibitor of CDP-DG:inositol transferase.  相似文献   

17.
Human erythrocytes were loaded with myo-[(3)H]-inositol in the presence or absence of cytidine trisphosphate to investigate the synthesis of membrane phosphoinositides in the intact red cell. The addition of cytidylic nucleotides to the loading mixture yielded a four-fold increase in the [(3)H]-labeling of the membranes. The [(3)H]-labeling of phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was distinguished by two chromatographic techniques. Experiments performed on white ghosts demonstrated the presence of CDP-diacylglycerol synthase and phosphatidylinositol synthase. These results and those already reported allow to discuss a possible turnover of the inositol polar head.  相似文献   

18.
We have identified the structure of phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) in human platelets. These lipids accounted for less than 2% of the total 32P incorporated into inositol phospholipids in the platelets. All three lipids were labeled in unstimulated platelets, but incorporation of 32P changed rapidly by 15 s after thrombin stimulation, suggesting that they are important in platelet activation. Specific inositol polyphosphate phosphatases were used to both identify the lipid structures and to determine the route of synthesis of these lipids. During 32P labeling and after thrombin stimulation of human platelets, as much as 60% of the total radioactivity present in PtdIns(3,4)P2 was found in the D-4 phosphate and only 35% in the D-3 phosphate indicating that PtdIns(3)P is the precursor of PtdIns(3,4)P2. In addition, the D-5 and D-4 phosphates of PtdIns(3,4,5)P3 each contained 35-40% of the total radioactivity in the molecule compared with only 18-28% in the D-3 position, suggesting that PtdIns(3,4)P2 and not PtdIns(4,5)P2 is the major precursor of this lipid. These results define the predominant pathway for synthesis of these lipids in platelets as PtdIns----PtdIns(3)P----PtdIns(3,4)P2----PtdIns(3,4,5)P3.  相似文献   

19.
Alcohols induce mating-structure activation in Chlamydomonas eugametos gametes. From the effect of ethanol on the 32P-labelling of polyphosphoinositides, we conclude that the synthesis of these lipids is stimulated. Biologically inactive concentrations of ethanol (<6%) had no effect on synthesis, but 6–8% ethanol stimulated synthesis for upto 60 min. The 32P incorporated into polyphosphoinositides and phosphatidic acid during ethanol treatment was readily chased out when 1 mM unlabelled Na3PO4 was added. Using a binding assay for inositol 1,4,5-trisphosphate, we show that the production of this phospholipid constituent is dramatically increased after ethanol treatment. This effect, coupled to a rise in intracellular calcium concentration, could explain gamete activation. The significance of these results in explaining other ethanol-induced phenomena in algae is discussed.Abbreviations Ins(1,4,5)P3 inositol 1,4,5-trisphosphate - PtdA phosphatidic acid - PtdIns phosphatidylinositol - PtdIns(4)P phosphatidylinositol 4-phosphate - PtdIns(4,5)P2 phosphatidylinositol 4,5-bisphosphate To whom correspondence should be addressedWe thank Dr. P. van Haastert (Biochemistry, University of Groningen, The Netherlands) and his colleagues for introducing us to their Ins(1,4,5)P3 assay, and Ben ten Brink (Molecular Cell Biology, University of Amsterdam, The Netherlands) for information about contractile vacuoles. We also thank Bas Nagelkerken, Marcel van der Vaart, Pieter van der Schoor, Gyuri Fenyvesi and Susan Kenter for their help.  相似文献   

20.
The phosphoinositide phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] is a key signaling molecule in animal cells. It can be hydrolyzed to release 1,2-diacyglycerol and inositol 1,4,5-trisphosphate (IP(3)), which in animal cells lead to protein kinase C activation and cellular calcium mobilization, respectively. In addition to its critical roles in constitutive and regulated secretion of proteins, PtdIns(4,5)P(2) binds to proteins that modify cytoskeletal architecture and phospholipid constituents. Herein, we report that Arabidopsis plants grown in liquid media rapidly increase PtdIns(4,5)P(2) synthesis in response to treatment with sodium chloride, potassium chloride, and sorbitol. These results demonstrate that when challenged with salinity and osmotic stress, terrestrial plants respond differently than algae, yeasts, and animal cells that accumulate different species of phosphoinositides. We also show data demonstrating that whole-plant IP(3) levels increase significantly within 1 min of stress initiation, and that IP(3) levels continue to increase for more than 30 min during stress application. Furthermore, using the calcium indicators Fura-2 and Fluo-3 we show that root intracellular calcium concentrations increase in response to stress treatments. Taken together, these results suggest that in response to salt and osmotic stress, Arabidopsis uses a signaling pathway in which a small but significant portion of PtdIns(4,5)P(2) is hydrolyzed to IP(3). The accumulation of IP(3) occurs during a time frame similar to that observed for stress-induced calcium mobilization. These data also suggest that the majority of the PtdIns(4,5)P(2) synthesized in response to salt and osmotic stress may be utilized for cellular signaling events distinct from the canonical IP(3) signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号