首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in alpha-synuclein, parkin and ubiquitin C-terminal hydrolase L1, and defects in 26/20S proteasomes, cause or are associated with the development of familial and sporadic Parkinson's disease (PD). This suggests that failure of the ubiquitin-proteasome system (UPS) to degrade abnormal proteins may underlie nigral degeneration and Lewy body formation that occur in PD. To explore this concept, we studied the effects of lactacystin-mediated inhibition of 26/20S proteasomal function and ubiquitin aldehyde (UbA)-induced impairment of ubiquitin C-terminal hydrolase (UCH) activity in fetal rat ventral mesencephalic cultures. We demonstrate that both lactacystin and UbA caused concentration-dependent and preferential degeneration of dopaminergic neurons. Inhibition of 26/20S proteasomal function was accompanied by the accumulation of alpha-synuclein and ubiquitin, and the formation of inclusions that were immunoreactive for these proteins, in the cytoplasm of VM neurons. Inhibition of UCH was associated with a loss of ubiquitin immunoreactivity in the cytoplasm of VM neurons, but there was a marked and localized increase in alpha-synuclein staining which may represent the formation of inclusions bodies in VM neurons. These findings provide direct evidence that impaired protein clearance can induce dopaminergic cell death and the formation of proteinaceous inclusion bodies in VM neurons. This study supports the concept that defects in the UPS may underlie nigral pathology in familial and sporadic forms of PD.  相似文献   

2.
Proteasomal dysfunction has been recently implicated in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and diffuse Lewy body disease. We have developed an in vitro model of proteasomal dysfunction by applying pharmacological inhibitors of the proteasome, lactacystin or ZIE[O-tBu]-A-leucinal (PSI), to dopaminergic PC12 cells. Proteasomal inhibition caused a dose-dependent increase in death of both naive and neuronally differentiated PC12 cells, which could be prevented by caspase inhibition or CPT-cAMP. A percentage of the surviving cells contained discrete cytoplasmic ubiquitinated inclusions, some of which also contained synuclein-1, the rat homologue of human alpha-synuclein. However the total level of synuclein-1 was not altered by proteasomal inhibition. The ubiquitinated inclusions were present only within surviving cells, and their number was increased if cell death was prevented. We have thus replicated, in this model system, the two cardinal pathological features of Lewy body diseases, neuronal death and the formation of cytoplasmic ubiquitinated inclusions. Our findings suggest that inclusion body formation and cell death may be dissociated from one another.  相似文献   

3.
Gamma-secretase catalyzes intramembraneous proteolysis of several type I transmembrane proteins, including beta-amyloid precursor protein (APP), to generate amyloid beta protein (Abeta), a key player in the pathogenesis of Alzheimer's disease (AD). The critical components of the gamma-secretase complex include presenilin (PS), nicastrin (NCT), presenilin enhancer-2 (PEN-2) and anterior pharynx defective-1 (APH-1). Abnormalities of the ubiquitin-proteasome pathway have been implicated in the pathogenesis of AD; while PS and PEN-2 turnover is regulated by this pathway, it is unknown whether the ubiquitin-proteasome pathway is also involved in the degradation of APH-1 protein. In this study, we found that the expression of endogenous and exogenous APH-1 significantly increased in cells treated with proteasome-specific inhibitors. The effect of the proteasome inhibitors on APH-1 was dose- and time-dependent. APH-1 protein was ubiquitinated. Pulse-chase metabolic labeling experiments showed that the degradation of newly synthesized radiolabeled APH-1 proteins was inhibited by lactacystin. Disruption of the PS1 and PS2 genes did not affect the degradation of APH-1 by the ubiquitin-proteasome pathway. Furthermore, over-expression of APH-1 and inhibition of proteasomal APH-1 degradation facilitated gamma-secretase cleavage of APP to generate Abeta. These results demonstrate that the degradation of APH-1 protein is mediated by the ubiquitin-proteasome pathway.  相似文献   

4.
Synphilin-1 was described as a protein interacting with α-synuclein and is commonly found in Lewy bodies, the pathological hallmark of Parkinson's disease (PD). Our group has previously described and characterized in vitro a mutation in the synphilin-1 gene (R621C) in PD patients. Providing the first characterization of synphilin-1 expression in an animal model, we here used adenoviral gene transfer to study the effects of wild-type (WT) and R621C synphilin-1 in dopaminergic neurons in mouse brain. As synphilin-1 is commonly used to trigger aggregation of α-synuclein in cell culture, we investigated not only non-transgenic C57Bl/6 mice but also A30P-α-synuclein transgenic animals. Both WT synphilin-1 and R621C synphilin-1 led to the formation of Thioflavine-S positive inclusions in C57Bl/6 mice and degeneration of dopaminergic neurons in the substantia nigra. R621C synphilin-1 induced more aggregate formation than WT synphilin-1 in A30P-α-synuclein transgenic mice, consistent with the role of the R621C mutation as a susceptibility factor for PD. Synphilin-1 expression may be used to improve current mouse models of PD, as it induced both the formation of aggregates and degeneration of dopaminergic neurons, two core characteristics of PD that have not been well reproduced with expression of α-synuclein.  相似文献   

5.
alpha-Synuclein is a major component of Lewy bodies, a neuropathological feature of Parkinson's disease. Two alpha-synuclein mutations, Ala53Thr and Ala30Pro, are associated with early onset, familial forms of the disease. Recently, synphilin-1, a protein found to interact with alpha-synuclein by yeast two hybrid techniques, was detected in Lewy bodies. In this study we report the interaction of alpha-synuclein and synphilin-1 in human neuroglioma cells using a sensitive fluorescence resonance energy transfer technique. We demonstrate that the C-terminus of alpha-synuclein is closely associated with the C-terminus of synphilin-1. A weak interaction occurs between the N-terminus of alpha-synuclein and synphilin-1. The familial Parkinson's disease associated mutations of alpha-synuclein (Ala53Thr and Ala30Pro) also demonstrate a strong interaction between their C-terminal regions and synphilin-1. However, compared with wild-type alpha-synuclein, significantly less energy transfer occurs between the C-terminus of Ala53Thr alpha-synuclein and synphilin-1, suggesting that the Ala53Thr mutation alters the conformation of alpha-synuclein in relation to synphilin-1.  相似文献   

6.
Mice treated with the psychostimulant methamphetamine (MA) showed the appearance of intracellular inclusions in the nucleus of medium sized striatal neurones and cytoplasm of neurones of the substantia nigra pars compacta but not in the frontal cortex. All inclusions contained ubiquitin, the ubiquitin activating enzyme (E1), the ubiquitin protein ligase (E3-like, parkin), low and high molecular weight heat shock proteins (HSP 40 and HSP 70). Inclusions found in nigral neurones stained for alpha-synuclein, a proteic hallmark of Lewy bodies that are frequently observed in Parkinson's disease and other degenerative disorders. However, differing from classic Lewy bodies, MA-induced neuronal inclusions appeared as multilamellar bodies resembling autophagic granules. Methamphetamine reproduced this effect in cultured PC12 cells, which offered the advantage of a simple cellular model for the study of the molecular determinants of neuronal inclusions. PC12 inclusions, similar to those observed in nigral neurones, were exclusively localized in the cytoplasm and stained for alpha-synuclein. Time-dependent experiments showed that inclusions underwent a progressive fusion of the external membranes and developed an electrodense core. Inhibition of dopamine synthesis by alpha-methyl-p-tyrosine (alphaMpT), or administering the antioxidant S-apomorphine largely attenuated the formation of inclusions in PC12 cells exposed to MA. Inclusions were again observed when alphaMpT-treated cells were loaded with l-DOPA, which restored intracellular dopamine levels.  相似文献   

7.
Although the participation of the ubiquitin-dependent pathway and of the proteasome in apoptosis has been proposed, its role in this process is not yet clearly defined. In previous studies, we have shown that in the central nervous system of the rat, programmed cell death and the ubiquitin-dependent proteolytic pathway are closely related to each other and that different types of neurons and of glial cells, shown different types of correlation between the two phenomena. In this work, we have used lactacystin, a highly specific inhibitor of the proteasome, to explore in Schwann cell cultures the relationship between the activity of the Ub-dependent pathway and apoptosis. Apoptosis was explored analyzing changes in nuclear morphology, using the Annexin V assay and by flow cytometry. Activity of caspase-3 was also measured. Changes in the levels of ubiquitin-protein conjugates and of the ubiquitin activating enzymes, E1, as well as expression of proteins that instruct the cells to apoptosis (p53, NFB-IB, Bc12), or that participate in the control and regulation of the cell cycle, were also examined. Our results indicate that the decrease in the activity of the proteasome induced by lactacystin in Schwann cells, induces apoptotic cell death through changes in the concentration of certain key proteins that are involved in the apoptosis-signaling pathways.  相似文献   

8.
Several lines of evidence suggest that the ubiquitin-proteasome pathway is involved in sepsis-induced muscle catabolism. The gene expression of ubiquitin and several of the proteasome subunits was increased in muscle from both septic rats and patients. In other studies, the activity of isolated 20S proteasomes was stimulated in septic muscles. Sepsis-induced increase in muscle total and myofibrillar protein breakdown was inhibited with specific proteasome blockers. Although the ubiquitin-proteasome pathway is upregulated in septic muscle, it is still unclear how the myofibrillar proteins actin and myosin are ubiquitinated and become substrates for the 26S proteasome. Recent studies suggest that a calcium-dependent, calpain-mediated process releases myofilaments from the Z-disks during sepsis. It is possible that this process exposes destabilizing N-terminal residues on actin and myosin, making them suitable substrates for the N-end rule pathway involving the 14 kD ubiquitin-conjugating enzyme E214k and the ubiquitin-protein ligase E3.  相似文献   

9.
10.
Parkinson's disease (PD) is a common neurodegenerative disorder caused mainly because of the loss of dopaminergic neurons in the substantia nigra. Protein inclusions called Lewy bodies are the most common pathological hallmark of PD and other synucleinopathies. Because the main component of these inclusions is α-synuclein, aggregation of this protein is thought to be a key pathogenic event in this disease. In the present investigation we report that E6 associated protein (E6-AP), a HECT (homologous to E6-AP C-terminus) domain ubiquitin ligase is a component of Lewy bodies in post-mortem PD brain. In the cell culture model, we demonstrate that endogenous E6-AP colocalizes with α-synuclein in juxtanuclear aggregates. E6-AP is also recruited to the centrosome upon inhibition of the proteasome function suggesting its involvement in the degradation of misfolded proteins. Over-expression of E6-AP enhances the degradation of wild type as well as the mutant forms of α-synuclein in a proteasome-dependent manner. E6-AP also promotes the degradation of the more toxic oligomeric forms of α-synuclein. Our data suggests that E6-AP is involved in the clearance of α-synuclein.  相似文献   

11.
12.
Parkinson's disease (PD) is characterized by accumulation of α-synuclein (α-syn) and degeneration of neuronal populations in cortical and subcortical regions. Mitochondrial dysfunction has been considered a potential unifying factor in the pathogenesis of the disease. Mutations in genes linked to familial forms of PD, including SNCA encoding α-syn and Pten-induced putative kinase 1 ( PINK1 ), have been shown to disrupt mitochondrial activity. We investigated the mechanisms through which mutant Pink1 might disrupt mitochondrial function in neuronal cells with α-syn accumulation. For this purpose, a neuronal cell model of PD was infected with virally-delivered Pink1, and was analyzed for cell survival, mitochondrial activity and calcium flux. Mitochondrial morphology was analyzed by confocal and electron microscopy. These studies showed that mutant (W437X) but not wildtype Pink1 exacerbated the alterations in mitochondrial function promoted by mutant (A53T) α-syn. This effect was associated with increased intracellular calcium levels. Co-expression of both mutant Pink1 and α-syn led to alterations in mitochondrial structure and neurite outgrowth that were partially ameliorated by treatment with cyclosporine A, and completely restored by treatment with the mitochondrial calcium influx blocker Ruthenium Red, but not with other cellular calcium flux blockers. Our data suggest a role for mitochondrial calcium influx in the mechanisms of mitochondrial and neuronal dysfunction in PD. Moreover, these studies support an important function for Pink1 in regulating mitochondrial activity under stress conditions.  相似文献   

13.
The rare inherited form of Parkinson's disease (PD), PARK5 , is caused by a missense mutation in ubiquitin carboxy-terminal hydrolase-L1 ( UCH-L1 ) gene, resulting in Ile93Met substitution in its gene product (UCH-L1Ile93Met). PARK5 is inherited in an autosomal-dominant mode, but whether the Ile93Met mutation gives rise to a gain-of-toxic-function or loss-of-function of UCH-L1 protein remains controversial. Here, we investigated the selective vulnerabilities of dopaminergic (DA) neurons in UCH-L1-transgenic (Tg) and spontaneous UCH-L1-null gracile axonal dystrophy mice to an important PD-causing insult, abnormal accumulation of α-synuclein (αSyn). Immunohistochemistry of midbrain sections of a patient with sporadic PD showed αSyn- and UCH-L1-double-positive Lewy bodies in nigral DA neurons, suggesting physical and/or functional interaction between the two proteins in human PD brain. Recombinant adeno-associated viral vector-mediated over-expression of αSyn for 4 weeks significantly enhanced the loss of nigral DA cell bodies in UCH-L1Ile93Met-Tg mice, but had weak effects in age-matched UCH-L1wild-type-Tg mice and non-Tg littermates. In contrast, the extent of αSyn-induced DA cell loss in gracile axonal dystrophy mice was not significantly different from wild-type littermates at 13-weeks post-injection. Our results support the hypothesis that PARK5 is caused by a gain-of-toxic-function of UCH-L1Ile93Met mutant, and suggest that regulation of UCH-L1 in nigral DA cells could be a future target for treatment of PD.  相似文献   

14.
Yuchen Feng 《Autophagy》2017,13(10):1617-1618
Damaged or aggregated proteins and organelles accumulate with age and contribute to various age-related pathologies including Alzheimer, Parkinson or Huntington diseases. In eukaryotic cells, there are 2 major pathways for degradation of the cytoplasm: The ubiquitin–proteasome system (UPS) and macroautophagy/autophagy. Both pathways can share the characteristic of initiating the process by ubiquitination of the substrate, but they utilize different ubiquitin receptors. In a paper described in a punctum in this issue, Lu et al. used the yeast Saccharomyces cerevisiae to demonstrate that the decision to use a particular pathway is made through a mechanism that depends on the receptors rather than the specific type of substrate ubiquitination.  相似文献   

15.
Mutations in alpha-synuclein (A30P and A53T) are involved in some cases of familial Parkinson's disease (FPD), but it is not known how they result in nigral cell death. We examined the effect of alpha-synuclein overexpression on the response of cells to various insults. Wild-type alpha-synuclein and alpha-synuclein mutations associated with FPD were overexpressed in NT-2/D1 and SK-N-MC cells. Overexpression of wild-type alpha-synuclein delayed cell death induced by serum withdrawal or H(2)O(2), but did not delay cell death induced by 1-methyl-4-phenylpyridinium ion (MPP(+)). By contrast, wild-type alpha-synuclein transfectants were sensitive to viability loss induced by staurosporine, lactacystin or 4-hydroxy-2-trans-nonenal (HNE). Decreases in glutathione (GSH) levels were attenuated by wild-type alpha-synuclein after serum deprivation, but were aggravated following lactacystin or staurosporine treatment. Mutant alpha-synucleins increased levels of 8-hydroxyguanine, protein carbonyls, lipid peroxidation and 3-nitrotyrosine, and markedly accelerated cell death in response to all the insults examined. The decrease in GSH levels was enhanced in mutant alpha-synuclein transfectants. The loss of viability induced by toxic insults was by apoptosic mechanism. The presence of abnormal alpha-synucleins in substantia nigra in PD may increase neuronal vulnerability to a range of toxic agents.  相似文献   

16.
17.
18.
Proteosomal degradation of proteins is one of the major mechanisms of intracellular protein turnover. Failure of the proteosome to degrade misfolded protein is implicated in the accumulation of α-synuclein in Parkinson's disease (PD). Heme oxygenase-1 (HO-1), an enzyme that converts heme to free iron, carbon monoxide (CO) and biliverdin (bilirubin precursor) is expressed in response to various stressors. HO-1 is up-regulated in PD- and Alzheimer's disease-affected neural tissues. In this study, we found that HO-1 over-expression engenders dose-dependent decreases in α-synuclein protein levels in human neuroblastoma M17 cells. When over-expression of HO-1 was silenced in HO-1 transfected cells, level of α-synuclein was restored. Likewise, treatment of HO-1 over-expressing cells with the HO-1 inhibitor, tin mesoporphyrin, the iron chelator deferoxamine or antagonist of CO-dependent cGMP activation, methylene blue, mitigated the HO-1-induced reduction in α-synuclein levels. Furthermore, when HO-1 over-expressing cells were treated with the proteosome inhibitors, lactacystin and MG132, level of α-synuclein was almost completely restored. In contrast to the effect on α-synuclein [wild-type (WT)] levels, HO-1 over-expression did not significantly impact PD-associated α-synuclein (A30P) levels in these cells. HO-1 also significantly reduced aggregation of α-synuclein (WT) but not that of A30P. Our results suggest that HO-1, which is expressed when neurons are exposed to toxic stimuli capable of inducing protein misfolding, triggers proteosomal degradation of proteins and prevents intracellular accumulation of protein aggregates and inclusions. Resistance to HO-1 induced proteosomal degradation may render the familial PD-associated A30P mutation prone to toxic intracellular aggregation.  相似文献   

19.
Ubiquitin (Ub)-mediated proteasome-dependent proteolysis is critical in regulating multiple biological processes including apoptosis. We show that the unstructured BH3-only protein, NOXA, is degraded by an Ub-independent mechanism requiring 19S regulatory particle (RP) subunits of the 26S proteasome, highlighting the possibility that other unstructured proteins reported to be degraded by 20S proteasomes in vitro may be bona fide 26S proteasome substrates in vivo. A lysine-less NOXA (NOXA-LL) mutant, which is not ubiquitinated, is degraded at a similar rate to wild-type NOXA. Myeloid cell leukemia 1, but not other anti-apoptotic BCL-2 family proteins, stabilizes NOXA by interaction with the NOXA BH3 domain. Depletion of 19S RP subunits, but not alternate proteasome activator REG subunits, increases NOXA half-life in vivo. A NOXA-LL mutant, which is not ubiquitinated, also requires an intact 26S proteasome for degradation. Depletion of the 19S non-ATPase subunit, PSMD1 induces NOXA-dependent apoptosis. Thus, disruption of 26S proteasome function by various mechanisms triggers the rapid accumulation of NOXA and subsequent cell death strongly implicating NOXA as a sensor of 26S proteasome integrity.  相似文献   

20.
DJ-1 is a ubiquitously expressed protein involved in various cellular processes including cell proliferation, RNA-binding, and oxidative stress. Mutations that result in loss of DJ-1 function lead to early onset parkinsonism in humans, and DJ-1 protein is present in pathological lesions of several tauopathies and synucleinopathies. In order to further investigate the role of DJ-1 in human neurodegenerative disease, we have generated novel polyclonal and monoclonal antibodies to human DJ-1 protein. We have characterized these antibodies and confirmed the pathological co-localization of DJ-1 with other neurodegenerative disease-associated proteins, as well as the decrease in DJ-1 solubility in disease tissue. In addition, we report the presence of DJ-1 in a large molecular complex (> 2000 kDa), and provide evidence for an interaction between endogenous DJ-1 and alpha-synuclein in normal and diseased tissue. These findings provide new avenues towards the study of DJ-1 function and how loss of its activity may lead to parkinsonism. Furthermore, our results provide further evidence for the interplay between neurodegenerative disease-associated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号