首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The hypothesis that both mitochondrial (mt) complementary DNA strands of tRNA genes code for tRNAs (sense-antisense coding) is explored. This could explain why mt tRNA mutations are 6.5 times more frequently pathogenic than in other mt sequences. Antisense tRNA expression is plausible because tRNA punctuation signals mt sense RNA maturation: both sense and antisense tRNAs form secondary structures potentially signalling processing. Sense RNA maturation processes by default 11 antisense tRNAs neighbouring sense genes. If antisense tRNAs are expressed, processed antisense tRNAs should have adapted more for translational activity than unprocessed ones. Four tRNA properties are examined: antisense tRNA 5′ and 3′ end processing by sense RNA maturation and its accuracy, cloverleaf stability and misacylation potential.  相似文献   

2.

Background  

T7 based linear amplification of RNA is used to obtain sufficient antisense RNA for microarray expression profiling. We optimized and systematically evaluated the fidelity and reproducibility of different amplification protocols using total RNA obtained from primary human breast carcinomas and high-density cDNA microarrays.  相似文献   

3.
4.
RNAstructure: software for RNA secondary structure prediction and analysis   总被引:1,自引:0,他引:1  

Background  

To understand an RNA sequence's mechanism of action, the structure must be known. Furthermore, target RNA structure is an important consideration in the design of small interfering RNAs and antisense DNA oligonucleotides. RNA secondary structure prediction, using thermodynamics, can be used to develop hypotheses about the structure of an RNA sequence.  相似文献   

5.
Edgar AJ 《BMC genomics》2003,4(1):18-12

Background

Overlapping sense/antisense genes orientated in a tail-to-tail manner, often involving only the 3'UTRs, form the majority of gene pairs in mammalian genomes and can lead to the formation of double-stranded RNA that triggers the destruction of homologous mRNAs. Overlapping polyadenylation signal sequences have not been described previously.

Results

An instance of gene overlap has been found involving a shared single functional polyadenylation site. The genes involved are the human alpha/beta hydrolase domain containing gene 1 (ABHD1) and Sec12 genes. The nine exon human ABHD1 gene is located on chromosome 2p23.3 and encodes a 405-residue protein containing a catalytic triad analogous to that present in serine proteases. The Sec12 protein promotes efficient guanine nucleotide exchange on the Sar1 GTPase in the ER. Their sequences overlap for 42 bp in the 3'UTR in an antisense manner. Analysis by 3' RACE identified a single functional polyadenylation site, ATTAAA, within the 3'UTR of ABHD1 and a single polyadenylation signal, AATAAA, within the 3'UTR of Sec12. These polyadenylation signals overlap, sharing three bp. They are also conserved in mouse and rat. ABHD1 was expressed in all tissues and cells examined, but levels of ABHD1 varied greatly, being high in skeletal muscle and testis and low in spleen and fibroblasts.

Conclusions

Mammalian ABHD1 and Sec12 genes contain a conserved 42 bp overlap in their 3'UTR, and share a conserved TTTATTAAA/TTTAATAAA sequence that serves as a polyadenylation signal for both genes. No inverse correlation between the respective levels of ABHD1 and Sec12 RNA was found to indicate that any RNA interference occurred.  相似文献   

6.
7.
8.

Purpose of work  

Mutation of the p53 gene is the most common genetic alteration in human cancers. Our study proposes to rationally design a p53 antisense oligonucleotide (ASO) repository, which contains a series of ASOs containing single nucleotide differences to discriminate between each mutant and wild type (WT) p53.  相似文献   

9.

Background  

Activation of nuclear factor-κB (NF-κB) is one of the key events in early atherosclerosis and restenosis. We hypothesized that tumor necrosis factor-α (TNF-α) induced and NF-κB mediated expression of intercellular adhesion molecule-1 (ICAM-1) can be inhibited by antisense RelA p65 and NF-κB1 p50 oligonucleotides (RelA p65 and NF-κB1 p50).  相似文献   

10.
11.

Background  

Messenger RNA decay is an important mechanism for controlling gene expression in all organisms. The rate of the mRNA degradation directly affects the steady state concentration of mRNAs and therefore influences the protein synthesis. RNaseE has a key importance for the general mRNA decay in E.coli. While RNaseE initiates the degradation of most mRNAs in E.coli, it is likely that the enzyme is also responsible for the degradation of recombinant RNAs. As RNaseE is essential for cell viability and knockout mutants cannot be cultured, we investigated the possibility for a down-regulation of the intracellular level of RNaseE by antisense RNAs. During this study, an antisense RNA based approach could be established which revealed a strong reduction of the intracellular level of RNaseE in E.coli.  相似文献   

12.
13.
14.

Background

microRNAs (miRNAs) have been implicated in the control of many biological processes and their deregulation has been associated with many cancers. In recent years, the cancer stem cell (CSC) concept has been applied to many cancers including pediatric. We hypothesized that a common signature of deregulated miRNAs in the CSCs fraction may explain the disrupted signaling pathways in CSCs.

Methodology/Results

Using a high throughput qPCR approach we identified 26 CSC associated differentially expressed miRNAs (DEmiRs). Using BCmicrO algorithm 865 potential CSC associated DEmiR targets were obtained. These potential targets were subjected to KEGG, Biocarta and Gene Ontology pathway and biological processes analysis. Four annotated pathways were enriched: cell cycle, cell proliferation, p53 and TGF-beta/BMP. Knocking down hsa-miR-21-5p, hsa-miR-181c-5p and hsa-miR-135b-5p using antisense oligonucleotides and small interfering RNA in cell lines led to the depletion of the CSC fraction and impairment of sphere formation (CSC surrogate assays).

Conclusion

Our findings indicated that CSC associated DEmiRs and the putative pathways they regulate may have potential therapeutic applications in pediatric cancers.  相似文献   

15.
16.
17.

Background  

RNA interference (RNAi) technology is a powerful methodology recently developed for the specific knockdown of targeted genes. RNAi is most commonly achieved either transiently by transfection of small interfering (si) RNA oligonucleotides, or stably using short hairpin (sh) RNA expressed from a DNA vector or virus. Much controversy has surrounded the development of rules for the design of effective siRNA oligonucleotides; and whether these rules apply to shRNA is not well characterized.  相似文献   

18.
19.

Background  

Local structures of target mRNAs play a significant role in determining the efficacies of antisense oligonucleotides (ODNs), but some structure-based target site selection methods are limited by uncertainties in RNA secondary structure prediction. If all the predicted structures of a given mRNA within a certain energy limit could be used simultaneously, target site selection would obviously be improved in both reliability and efficiency. In this study, some key problems in ODN target selection on the basis of multiple predicted target mRNA structures are systematically discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号