首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that sialosylgangliotetraosylceramide (GM1) is a potent activator of delipidated (sodium cholate- and 1-butanol-extracted) lysosomal rat liver glucocerebroside:beta-glucosidase. Stimulation of 4-methylumbelliferyl-beta-D-glucopyranoside hydrolysis by the beta-glucosidase was markedly dependent upon the concentration of GM1 in the assay medium. Estimations of critical micellar concentration (CMC) performed fluorometrically using the dye N-phenylnaphthylamine revealed two CMC values of GM1 above 18 degrees C; the CMC of the primary micelles (3.32 microM) was temperature-independent whereas that of the secondary micelles decreased with decreasing temperature (17.2 and 10.8 microM at 37 and 20 degrees C, respectively). In the temperature range of 18-39 degrees C, beta-glucosidase activity increased sharply when the GM1 concentration was above the CMC of the secondary micelles. Although a heat-stable factor, purified from the spleen of a patient with Gaucher's disease, had a profound effect on the activation of beta-glucosidase by GM1, it decreased the CMC only slightly (14.8 versus 17.2 microM at 37 degrees C). The heat-stable factor (8 micrograms/ml) changed the shape of the activation curve from sigmoidal to hyperbolic, suggesting that the heat-stable factor permits beta-glucosidase to be activated by primary micelles or monomers. The results of gel filtration chromatography and sucrose gradient centrifugation in H2O and D2O revealed that the activation of beta-glucosidase by GM1 was associated with an increase in the size of the enzyme from 45,800 to 178,500 daltons and an increase in the partial specific volume from 0.697 to 0.740 ml/g. The active, reconstituted beta-glucosidase appears to consist of 50% protein and 50% ganglioside (56 molecules/178,500 g). Concentrations of GM1 below the CMC of secondary micelles increased the rate of inactivation of the enzyme by the irreversible inhibitor conduritol B epoxide at 37 degrees C, indicating that GM1 monomers or primary micelles do interact with the enzyme, even though they do not increase the rate of hydrolysis of 4-methylumbelliferyl-beta-D-glucopyranoside by the enzyme.  相似文献   

2.
The acidic phospholipid requirement of the predominant particulate beta-glucosidase of mammalian spleen and liver was investigated using a series of N-acyl derivatives of dioleoyl phosphatidylethanolamine (PE). The PE, a neutral phospholipid, was converted to an acidic lipid, (N-acyl)-phosphatidylethanolamine (NAPE) by acylation of the amino group with different fatty acyl chains. Lysosomal beta-glucosidases from rat liver and spleens of controls and patients with various types of Gaucher's disease were solubilized and delipidated by extraction with sodium cholate and 1-butanol. All members of the NAPE series tested were effective activators of the delipidated rat liver beta-glucosidase, and the stimulatory power of the NAPE family increased with increasing chain length of the fatty acid substitution. In contrast, dioleoyl-PE had no effect on beta-glucosidase activity. A heat-stable factor (HSF) purified from the spleen of a patient with Gaucher's disease significantly increased the sensitivity of the rat liver beta-glucosidase to all of the NAPE derivatives. The maximum stimulation achieved in the presence of HSF was independent of N-acyl chain length. Compared to the potent activator, phosphatidylserine (PS), (N-acetyl)-PE and (N-linoleoyl)-PE were half as effective as activators of beta-glucosidase from control human spleen. PS stimulated the beta-glucosidase of type 1 nonneurologic Gaucher's disease, but none of the NAPE compounds activated it. Neither PS nor any of the (N-acyl)-PE compounds could activate a delipidated preparation of beta-glucosidase obtained from the spleen of a neurologic case. These results indicate that although the presence of a net negative charge on a phospholipid confers upon it an ability to reconstitute beta-glucosidase activity to the normal, nonmutant enzyme, it is insufficient to permit differentiation of the various types of Gaucher's disease.  相似文献   

3.
Two isozymes of membrane-bound beta-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21) with activity towards 4-methylumbelliferyl-beta-D-glucopyranoside have been identified in human cells. One of these isozymes was found to have a pH optimum of 5.0, a Km of 0.4 mM and to be rapidly inactivated at pH 4.0 ("acid-labile"). The second isozyme had a pH optimum of 4.5, a Km of 0.8 mM and was stable at pH 4.0 ("acid-stable"). Cultured long-term lymphoid lines and peripheral blood leukocytes contained both isozymes while cultured skin fibroblasts contained only the "acid-stable" form in detectable amounts. The specific activity of the "acid-stable" isozyme was severely reduced in cultured skin fibroblasts, cultured long-term lines and peripheral leukocytes from patients with Gaucher's disease. The specific activity of the "acid-labile" enzyme in the latter two cell types was apparently unaffected. The beta-glucosidase activity in all three cell types examined was predominantly particulate but the enzyme could be solubilized with low concentrations of Triton X-100. The solubilized enzyme required sodium taurocholate (0.2%) for maximum activity. Solubilized beta-glucosidase did not exhibit the cell-specific differences in pH optimum and Km shown by the membrane-bound enzyme.  相似文献   

4.
The behaviour of highly purified glucosylceramide beta-glucosidase (glucosylceramidase, EC 3.2.1.45) from human placenta [Furbish, F. S., Blair, H. E., Shiloach, J., Pentchev, P. G. & Brady, R. B. (1977) Proc. Natl Acad. Sci. USA 74, 3560-3563] was investigated in the absence of detergents with structurally modified glucosylceramides inserted into unilamellar liposomes. The reaction between the water-soluble enzyme and the liposomal substrates was significantly dependent on the structure of the lipophilic aglycon moiety of glycolipids: glucosyl-N-acetyl-sphingosines (D-erythro and L-threo) were better substrates than the corresponding glucosylceramides. The L-threo derivatives were poorer substrates with higher apparent Km values than the corresponding D-erythro derivatives. For glucosyl-3-keto-ceramide and glucosyl-dihydro-ceramide (D-erythro), higher Km values were found than for glucosylceramide. Sphingosine, glucosylsphingosine and glucosyl-N-acetyl-sphingosine were the most effective inhibitors of the hydrolysis of glucosylceramide. D-erythro-Ceramide and D-galactosyl-N-acetyl-D-erythro-sphingosine inhibited the hydrolysis of amphiphilic glucosylceramide but not that of water-soluble 4-methyl-umbelliferyl-beta-glucoside, suggesting a hydrophobic binding site of the enzyme for the aglycon moiety of its membrane-bound substrate. Dilution experiments suggested that at least a fraction of the enzyme associates with the liposomes and degrades the lipid substrate even in the absence of activator proteins. Acidic phospholipids incorporated into liposomes caused a powerful stimulation (30-40-fold) of the glucosylceramide beta-glucosidase, whereas acidic sphingolipids (sulphatide, gangliosides GM1 and GD1a) incorporated into liposomes stimulated this enzyme only moderately (3-10-fold).  相似文献   

5.
Phosphatidic acid (PtdOH) has been shown not only to stimulate autophosphorylation and autoactivation of phosphorylase kinase of rabbit skeletal muscle but also to decrease the apparent Ka for Ca2+ on autophosphorylation sharply [Negami et al. (1985) Biochem. Biophys. Res. Commun. 131, 712-719]. In this study we investigated the interaction between PtdOH and other phospholipids on autophosphorylation and autoactivation of this enzyme. Acidic phospholipids, such as phosphatidylserine (PtdSer), phosphatidylinositol (PtdIns) and PtdOH, stimulated this reaction about 2-4-fold, and the approximate Ka values of this reaction were 10 micrograms/ml, 6.3 micrograms/ml and 30 micrograms/ml respectively. The molar ratio of PtdIns and PtdSer with maximal effect on autophosphorylation was about 1:1. Under these conditions PtdOH stimulated the initial velocity of autophosphorylation about 5.2-fold. When fully autophosphorylated, about 12-13 mol phosphate per tetramer (alpha beta gamma delta) were incorporated in the presence of mixed acidic phospholipids (PtdOH:PtdIns:PtdSer = 2:1:1), which was about twice as much as values observed without effectors. In the presence of mixed acidic phospholipids there was a concomitant enhancement of kinase activity, about 30-40-fold at pH 6.8 and 2.5-3-fold at pH 8.2. Mixed acidic phospholipids sharply decreased an apparent Ka for Ca2+ from 4 X 10(-5) M to 8 X 10(-7) M. With mixed acidic phospholipids as effectors this autophosphorylation occurred through an intramolecular mechanism. Based on these results, autophosphorylation and autoactivation of phosphorylase kinase in the presence of acidic phospholipids may account for an important regulatory mechanism of glycogenolysis in muscle contraction.  相似文献   

6.
This report demonstrates the effect of primary alcohols on the kinetic properties of guinea pig liver cytosolic beta-glucosidase. Lineweaver-Burk analyses of the kinetic data revealed a biphasic response; at low concentrations the alcohols increased the Vmax 5--7-fold while at higher concentrations they caused a purely competitive type of inhibition. For example, with n-butyl alcohol, increasing the alcohol's concentration in the assay medium from 0 to 0.14 M (0-1% (v/v)) resulted in a progressive increase in Vmax to a value 7-fold above the basal level without affecting the Km. However, between 0.14 and 0.54 M (1 and 4% (v/v)) n-butyl alcohol, the Km for 4-methylumbelliferyl-beta-D-glucopyranoside increased significantly from 0.14 to 0.93 mM. In contrast to n-butyl alcohol or isobutyl alcohol, which are potent activators, structurally related compounds like sec-butyl alcohol, tert-butyl alcohol, butylurea, and butanesulfonic acid did not stimulate the activity of the cytosolic beta-glucosidase. In the concentration range where activation was observed, conventional secondary replots of 1/delta slope versus 1/[alcohol] yielded perfect straight lines, demonstrating that binding of a single molecule of alcohol to the beta-glucosidase was responsible for the initial phase of activation. Furthermore, the glycohydrolase displayed a propensity to bind the longer chain alcohols, as reflected by the KA (binding constant) values of 555, 146, 34.1, and 7.47 mM for ethanol, n-propyl alcohol, n-butyl alcohol, 1-pentanol, respectively. This phenomenon of nonessential activation by alcohols has led us to speculate on the presence of a physiologic activator for the beta-glucosidase in mammalian tissues which contain this enzyme.  相似文献   

7.
The secondary structure of amyloid betaAP(25-35) peptide was studied in pure form and in the presence of different phospholipid vesicles, by using Fourier transform infrared spectroscopy (FT-IR). Pure peptide aggregated with time, forming fibrils with beta-structure. Phospholipid vesicles formed by negatively charged phospholipids such as 1,2-dimyristoyl-sn-glycerol-3-phospho-L-serine (Myr2PtdSer), 1,2-dimyristoyl-sn-glycerol-3-phospho-rac-1-glycerol (Myr2PtdGro) and 1,2-dimyristoyl-sn-glycerol 3-phosphate (Myr2PtdH), greatly accelerated the aggregation of the peptide. However, the presence of vesicles formed by the zwitterionic phospholipid, 1, 2-dimyristoyl-sn-glycerol-3-phosphocholine (Myr2PtdCho), slowed down the aggregation process. Differential scanning calorimetry (DSC) measurements showed that the effect of betaAP(25-35) on the gel to crystal liquid phase transition was small at neutral pH for negatively charged phospholipids and practically nil for Myr2PtdCho. In the case of Myr2PtdSer the effect was also zero at pH 9 but the effect was large at pH 3. The effect on Myr2PtdH was not, however, very dependent on pH. These results were fully confirmed by the observation through FT-IR of the change with temperature of the CH2 antisymmetric stretching vibration. The case of Myr2PtdGro was special as this phospholipid presents polymorphism giving solid quasicrystalline phases when it is not sufficiently hydrated, and it is remarkable that betaAP(25-35) was able to induce the formation of crystalline phases in samples prepared through a method which ensure a good hydration of phospholipid. These results show that the interaction of amyloid betaAP(25-35) peptide with phospholipids is based on electrostatic interactions, that these interactions favour the aggregation of the peptides, and that the presence of the aggregates may disturb the lipid-water interphase of the membrane.  相似文献   

8.
The acid beta-glucosidase (D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) from human placenta is inhibited by sulphated macromolecules such as Dextran sulphate or chondroitin sulphate. This inhibition is alleviated by compounds such as crude taurocholate or phospholipids, which are known activators of acid beta-glucosidase. Partially-purified human beta-glucosidase will bind to Dextran sulphate linked to Sepharose 4B and can be eluted with low concentrations of crude sodium taurocholate. This procedure gives a 10-15 fold purification with good yield and has been included in a scheme giving an approx. 4000-fold purification of placental beta-glucosidase. Evidence is presented which suggests that phospholipids bind to beta-glucosidase by both ionic and hydrophobic interactions. The inhibition of enzyme activity caused by sulphated compounds and non-ionic detergents may be attributed to interference with, respectively, the ionic and hydrophobic binding of phospholipid to the enzyme.  相似文献   

9.
Phosphatidylethanol (Peth) formation catalyzed by the transphosphatidylation activity of phospholipase D was demonstrated to occur in a rat brain synaptosomal enriched preparation. The optimal pH was determined to be 6.5, and the optimal ethanol concentration was determined to be 0.3-0.4 M with an apparent Km of 0.2 M. Peth formation was barely detectable in the absence of an appropriate activator and several unsaturated fatty acids were found to be effective activators. The concentrations of oleic acid required for maximum activation varied with the concentration of exogenous phosphatidylcholine present in the incubation mixtures. All detergents tested were significantly less active than the unsaturated fatty acids and divalent ions were not required for Peth formation. Phosphatidylcholine was the most effective phosphatidyl donor of the phospholipids tested. Peth forming activity was greatest in the synaptic membrane fraction of the various brain subfractions examined. The 12,000 g-100,000 g particulate fraction of lung, heart, and adipose tissue had activities similar to that of brain.  相似文献   

10.
Peroxidation induced by ascorbate on phospholipids of isolated rat liver microsomes were accompanied by losses in glucose-6-phosphatase activity (EC 3.1.3.9.). The existence of marked differences in the degradation rate for each phospholipid suggests a relationship between the alteration of phosphatidylcholine containing one saturated and one unsaturated fatty acid and the decrease in activity of glucose-6-phosphatase; the inactivation of this enzyme was unrelated to the alteration of other phospholipids. These results support the idea that glucose-6-phosphatase and molecules of phosphatidylcholine having one saturated and one unsaturated fatty acid are in close apposition within the microsomal membrane.  相似文献   

11.
1. A soluble beta-glucosidase from sheep liver has been isolated and purified 114-fold by conventional enzyme fractionation procedures. The specific activity of the purified enzyme was 5910 mU/mg of protein. 2. The enzyme has a broad specificity and hydrolyzes the p-nitrophenyl derivatives of beta-D-glucose, beta-D-galactose, beta-D-fucose, beta-D-xylose and alpha-L-arabinose. The best Vmax/Km value corresponds to the beta-glucosidase activity. 3. The enzyme has a pH optimum between 4.5-5.5 for all the activities, and mol. wt 95,000. 4. A variety of chemicals was tested as possible activators or inhibitors. 5. The enzyme is strongly inhibited by aldono 1-5 lactones and DMDP. 6. The kinetic evidences suggest a substrate activation model and the existence of two active sites (a "gluco-fuco" site and a "galacto" site). 7. The activation energies were calculated from beta-glucosidase and beta-galactosidase activities.  相似文献   

12.
Human acid beta-glucosidase (glucosylceramidase; EC 3.2.1.45) cleaves the glycosidic bonds of glucosyl ceramide and synthetic beta-glucosides. Conduritol B epoxide (CBE) and its brominated derivative are mechanism-based inhibitors which bind covalently to the catalytic site of acid beta-glucosidase. Procedures using brominetritiated CBE and monospecific anti-human placental acid beta-glucosidase IgG were developed to determine the molar concentrations of functional acid beta-glucosidase catalytic sites in pure placental enzyme preparations from normal sources; kcat values then were calculated from Vmax = [Et]kcat using glucosyl ceramide substrates with dodecanoyl (2135 +/- 45 min-1) and hexanoyl (3200 +/- 410 min-1) fatty acid acyl chains and 4-alkyl-umbelliferyl beta-glucoside substrates with methyl (2235 +/- 197 min-1), heptyl (1972 +/- 152 min-1), nonyl (2220 +/- 247 min-1), and undecyl (773 +/- 44 min-1) alkyl chains. The respective kcat values for acid beta-glucosidase in a crude normal splenic preparation were about 60% of these values. In comparison, the kcat values of the mutant splenic acid beta-glucosidase from two Type 1 Ashkenazi Jewish Gaucher disease (AJGD) patients were about 1.5-3-fold decreased and had Km values for each substrate which were similar to those for the normal acid beta-glucosidase. The interaction of the normal and Type 1 AJGD enzymes with CBE in a 1:1 stoichiometry conformed to a model with reversible EI complexes formed prior to covalent inactivation. With CBE, the equal kmax values (maximal rate of inactivation) for the normal (0.051 +/- 0.009 min-1) and Type 1 AJGD (0.058 +/- 0.016 min-1) enzymes were consistent with the minor differences in kcat. In contrast, the Ki value (dissociation constant) (839 +/- 64 microM) for the Type 1 AJGD enzymes was about 5 times the normal Ki value (166 +/- 57 microM). These results indicated that the catalytically active Type 1 AJGD acid beta-glucosidase had nearly normal hydrolytic capacity and suggested an amino acid substitution in or near the acid beta-glucosidase active site leading to an in vivo instability of the mutant enzymatic activity.  相似文献   

13.
Naegleria fowleri cells, grown axenically, contain high levels of beta-D-glucosidase which catalyzes the hydrolysis of 4-methylumbelliferyl-beta-D-glucopyranoside (4MUGlc) (Km, 0.9 mM), octyl-beta-D-glucoside (Km, 0.17 mM), and p-nitrophenyl-beta-D-glucopyranoside at relative rates of 1.00, 2.88, and 1.16, respectively (substrate concentration, 3.0 mM). When the amebae are subjected to freeze-thawing, sonication, and centrifugation (100,000 g, 1 h), 85% of the beta-glucosidase activity appears in the supernatant fraction. The beta-glucosidase was purified 40-fold (34% yield) using a combination of chromatographic steps involving DE-52 cellulose, concanavalin A-Sepharose, and hydroxylapatite followed by isoelectric focusing. The predominant soluble beta-D-galactosidase activity in the Naegleria extract copurifies with the beta-D-glucosidase; the two activities have the same isoelectric point (pI, 6.9), similar heat stabilities, are both inhibited by lactobionic acid (Ki, 0.40 mM), and exhibit optima at pH 4.5, indicating that they are probably the same enzyme. The Naegleria beta-D-glucosidase has an apparent molecular weight of 66,000, a Stokes radius of 25 A, and a sedimentation coefficient of 4.2S. The beta-glucosidase is not inhibited by conduritol beta-epoxide or galactosylsphingosine but is completely inhibited by 1.25 mM bromo conduritol beta-epoxide. The latter compound, when present in the growth medium, inhibits the growth of the organism and profoundly alters its ultrastructure, the main effect being the apparent inhibition of cytokinesis and the generation of multinucleate cells. The issue of the role of the beta-glucosidase in the metabolism of the ameba and its possible role in pathogenic mechanisms are discussed.  相似文献   

14.
Phosphatidylserine (PtdSer)-liposomes when incubated with synaptosomal plasma membranes (SPM) of dog brain, evoked a significant increase (approx 80%) of the Ca2+-stimulated ATPase activity with maximal effect achieved at around 0.7 mumol PtdSer/mg SPM protein. Higher concentrations of PtdSer led to inhibition of the enzyme activity with respect to the maximal percentage of stimulation. Treatment of SPM with EGTA, to minimize the presence of bound cytoplasmic activator calmodulin, resulted in a mixed mechanism of inhibition of the enzyme activity (Vmax was decreased and Km increased) as estimated by Lineweaver-Burk plots. Addition of exogenous calmodulin resulted in an increase of Vmax and in a restoration of Km to control value. Ca2+-stimulated ATPase activity, in EGTA-treated SPM, showed the same figure of changes at different concentrations of PtdSer-liposomes as those of the control, but the turning point was now located at higher PtdSer concentrations. The results suggest that Ca2+-stimulated ATPase activity of SPM is modulated by PtdSer and that calmodulin participates in these interactions, probably, by regulating the contact between the enzyme and Ca2+ ions.  相似文献   

15.
Vesicles composed of phospholipids with different fatty acyl side chains have been utilized to examine the importance of the nonpolar membrane region for the prothrombin-converting activity of procoagulant phospholipid vesicles. Membranes composed of phosphatidylserine (PS) and phosphatidylcholine (PC) with unsaturated fatty acyl side chains were more active in prothrombin activation than membranes composed of phospholipids with saturated fatty acyl chains. This phenomenon was observed above the phase transition temperature, i.e., on membranes in the liquid-crystalline state. The prothrombin-converting activity of saturated phospholipids approached the activity of unsaturated phospholipids at high factor Va concentrations, which is indicative for a less favorable equilibrium constant for prothrombinase assembly on membrane surfaces composed of saturated phospholipids. The difference between saturated and unsaturated phospholipids was annulled on membranes with high mole percentages of PS. This may result from a compensating contribution of electrostatic forces to the binding equilibria involved in prothrombinase assembly. Additional effects on the prothrombin-converting activity were observed when membranes containing saturated phospholipids were studied below their phase transition temperature. In agreement with Higgins et al. [(1985) J. Biol. Chem. 260, 3604-3612], we found that the time required for the assembly of prothrombinase from membrane-bound factors Xa and Va is considerably prolonged on solid membranes. However, we also observed an effect of membrane fluidity on the steady-state rate of prothrombin activation. Kinetic experiments at saturating factor Va concentrations showed that the transition from the liquid-crystalline to the gel state caused a more than 9-fold decrease of the kcat of prothrombin activation without affecting the Km for prothrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In the yeast Saccharomyces cerevisiae, three pathways lead to the formation of cellular phosphatidylethanolamine (PtdEtn), namely the mitochondrial conversion of phosphatidylserine (PtdSer) to PtdEtn catalyzed by phosphatidylserine decarboxylase 1 (Psd1p), the equivalent reaction catalyzed by phosphatidylserine decarboxylase 2 (Psd2p) in the Golgi, and the CDP-ethanolamine branch of the so-called Kennedy pathway which is located to the microsomal fraction. To investigate the contributions of these three pathways to the cellular pattern of PtdEtn species (fatty acid composition) we subjected lipids of wild-type and yeast mutant strains with distinct defects in the respective pathways to mass spectrometric analysis. We also analyzed species of PtdSer and phosphatidylcholine (PtdCho) of these strains because formation of the three aminoglycerophospholipids is linked through their biosynthetic route. We demonstrate that all three pathways involved in PtdEtn synthesis exhibit a preference for the formation of C34:2 and C32:2 species resulting in a high degree of unsaturation in total cellular PtdEtn. In PtdSer, the ratio of unsaturated to saturated fatty acids is much lower than in PtdEtn, suggesting a high species selectivity of PtdSer decarboxylases. Finally, PtdCho is characterized by its higher ratio of C16 to C18 fatty acids compared to PtdSer and PtdEtn. In contrast to biosynthetic steps, import of all three aminoglycerophospholipids into mitochondria of wild-type and mutant cells is not highly specific with respect to species transported. Thus, the species pattern of aminoglycerophospholipids in mitochondria is mainly the result of enzyme specificities, but not of translocation processes involved. Our results support a model that suggests equilibrium transport of aminoglycerophospholipids between mitochondria and microsomes based on membrane contact between the two compartments.  相似文献   

17.
Alteration of the fatty acid composition of monolayer cultures of LM cells grown in chemically defined medium was achieved by supplementation with fatty acids complexed to bovine serum albumin. Phospholipids containing up to 40% linoleate were found in cells grown in medium containing 20 mu g of linoleate/ml. Incorporation of linoleate into phospholipids reached a plateau after 12-24 hr, and cells remained viable for at least 3-4 days. Although linoleic, linolenic, and arachidonic acids were incorporated into LM cells equally well, only the latter was elongated by these cells under these experimental conditions. Nonadecanoic acid was incorporated to a lesser extent than the polyunsaturated fatty acids. Phosphatidylcholine and phosphatidylethanolamine of LM cells had different fatty acid compositions; phosphatidylethanolamine contained more longer chain and unsaturated fatty acids. Cells were also grown in the absence of choline and presence of choline analogs such as N,N-dimethylethanolamine, N-methylethanolamine, 3-amino-1-propanol, and 1-2-amino-1-butanol. The analog phospholipids in these cells had fatty acid compositions which were intermediate between those of phosphatidylethanolamine and phosphatidylcholine of control cells grown in the presence of choline. Linoleate was found in both phosphatidylcholine and phosphatidylethanolamine of cells supplemented with linoleate. The sphingolipid fraction of these cells, however, did not contain significant amounts of linoleate. When linoleate was present in the phospholipids, compensatory decreases in the oleate and palmitoleate content of phospholipids were observed. Lowering of the growth temperature to 28 degrees produced an increase in unsaturate fatty acid content of the phospholipids. When linoleate was supplied to cells grown at 28 degrees, there was no further increase in the unsaturated fatty acid composition of the phospholipids. Using both fatty acid supplementation and lowered growth temperature, LM cell membranes can be produced which have phospholipids with vastly different fatty acid compositions.  相似文献   

18.
Effects of fatty acids, prostaglandins, and phospholipids on the activity of purified cGMP-stimulated cyclic nucleotide phosphodiesterase from calf liver were investigated. Prostaglandins A2, E1, E2, F1 alpha, and F2 alpha, thromboxane B2, and most phospholipids were without effect; lysophosphatidylcholine was a potent inhibitor. Several saturated fatty acids (carbon chain length 14-24), at concentrations up to 1 mM, had little or no effect on hydrolysis of 0.5 microM [3H]cGMP or 0.5 microM [3H]cAMP with or without 1 microM cGMP. In general, unsaturated fatty acids were inhibitory, except for myristoleic and palmitoleic acids which increased hydrolysis of 0.5 microM [3H]cAMP. The extent of inhibition by cis-isomers correlated with the number of double bonds. Increasing concentrations of palmitoleic acid from 10 to 100 microM increased hydrolysis of [3H]cAMP with maximal activation (60%) at 100 microM; higher concentrations were inhibitory. Palmitoleic acid inhibited cGMP hydrolysis and cGMP-stimulated cAMP hydrolysis with IC50 values of 110 and 75 microM, respectively. Inhibitory effects of palmitoleic acid were completely or partially prevented by equimolar alpha-tocopherol. Palmitelaidic acid, the trans isomer, had only slightly inhibitory effects. The effects of palmitoleic acid (100 microM) were dependent on substrate concentration. Activation was maximal with 1 microM [3H]cAMP and was reduced with increasing substrate; with greater than 10 microM cAMP, palmitoleic had no effect. Inhibition of cGMP hydrolysis was maximal at 2.5 microM cGMP and was reduced with increasing cGMP; at greater than 100 microM cGMP palmitoleic acid increased hydrolysis slightly. Palmitoleic acid did not affect apparent Km or Vmax for cAMP hydrolysis, but increased the apparent Km (from 17 to 60 microM) and Vmax for cGMP hydrolysis with little or no effect on the Hill coefficient for either substrate. These results suggest that certain hydrophobic domains play an important role in modifying the catalytic specificity of the cGMP-stimulated phosphodiesterase for cAMP and cGMP.  相似文献   

19.
Extraction of control human spleen glucocerebrosidase with sodium cholate and butan-l-ol reversibly inactivates the enzyme in terms of its ability to hydrolyse the water-soluble substrate 4-methylumbelliferyl beta-D-glucopyranoside (MUGlc). The acidic brain lipid galactocerebroside 3-sulphate (sulphatide) reconstitutes beta-glucosidase activity in a strongly concentration-dependent manner. In this study we show that sulphatide exhibits three critical micellar concentrations (CMCs): CMC1, 3.72 microM; CMC2, 22.6 microM; CMC3, 60.7 microM. We designate the aggregates formed at these CMCs as primary, secondary and tertiary micelles respectively. From the results of kinetic studies performed at various sulphatide concentrations (0.012-248 microM), we found that sulphatide monomers (less than 3 microM) decreased the Km (for MUGlc) of control glucocerebrosidase from 11 to 4.6 mM, and lowered the Vmax. 2-fold. However, secondary and tertiary micelles were required for expression of high control glucocerebrosidase activities. Glucocerebrosidase prepared from the spleen of a patient with non-neuronopathic type 1 Gaucher's disease exhibited a very low Km (2.8 mM) even in the absence of exogenous lipid, and sulphatide monomers had no effect on the mutant enzyme's Km or Vmax. However, secondary or tertiary micelles markedly increased the Vmax. of the type 1 glucocerebrosidase to 60% of the corresponding control enzyme value. In contrast, for the glucocerebrosidase of the neuronopathic type 2 case, although sulphatide decreased the Km from 9.2 to 1.7 mM, the Vmax. never reached more than 5% that of the control enzyme, even at high concentrations of sulphatide. In addition, we found that secondary and tertiary sulphatide micelles enhanced the rate of inactivation of all three glucocerebrosidase preparations by chymotrypsin. Collectively, these results indicate the presence of two sulphatide-binding sites on glucocerebrosidase: one that enhances substrate binding, and another that enhances catalysis.  相似文献   

20.
A low molecular weight form of adenosine deaminase from bovine skeletal muscle was purified about 930-fold. The enzyme had a mol. wt of 31,000, a Km value for adenosine of 2.37 X 10(-5) M and a pH optimum at 7.0. This enzyme is very resistant to heat inactivation and does not require metal activators or other dialysable cofactors. A possible role in the post-mortem metabolism of adenine nucleotide in skeletal muscle is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号