首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inhibition of pituitary adenylate cyclase by atrial natriuretic factor   总被引:6,自引:0,他引:6  
The effect of synthetic rat atrial natriuretic factor (ANF) on adenylate cyclase activity was studied in rat anterior and posterior pituitary homogenates. ANF (Arg 101-Tyr 126) inhibited adenylate cyclase activity in anterior and posterior pituitary homogenates in a concentration dependent manner. The maximum inhibitions observed were 42% in anterior pituitary with an apparent Ki of 10(-10) M, and 25% with an apparent Ki of 10(-11) M in posterior pituitary. Corticotropin-releasing factor (CRF), vasoactive intestinal peptide (VIP) and prostaglandins (PGE1) stimulated adenylate cyclase to various degrees in anterior pituitary homogenates and ANF inhibited the stimulatory effect of all these hormones. In addition ANF was also able to inhibit the stimulation exerted by NaF and forskolin which activate adenylate cyclase by receptor independent mechanism. Similarly, the stimulatory effects of N-Ethylcarboxamide adenosine (NECA), NaF and forskolin on adenylate cyclase in posterior pituitary homogenates were also inhibited by ANF. This is the first study demonstrating the inhibitory effect of ANF on pituitary adenylate cyclase.  相似文献   

2.
Regulation of Adenosine-Sensitive Adenylate Cyclase from Rat Brain Striatum   总被引:7,自引:5,他引:2  
An adenosine-sensitive adenylate cyclase has been characterized from rat brain striatum. In whole homogenates as well as in particulate fractions, N6-phenylisopropyl adenosine (PIA), 2-chloroadenosine, and adenosine N′-oxide were equipotent in stimulating adenylate cyclase. Although GTP inhibited basal as well as PIA-stimulated activity of whole homogenates, the enzyme showed an absolute dependency on GTP for stimulation by PIA, dopamine, epinephrine, and norepinephrine in a particulate fraction derived from discontinuous sucrose gradient centrifugation. Adenosine exerts two effects on this adenylate cyclase, stimulation at low concentrations and inhibition at high concentrations, suggesting the presence of two adenosine binding sites. The stimulation of adenylate cyclase by PIA was dependent on the concentration of Mg2-. The degree of stimulation by PIA was greater at a low concentration of Mg2+, which suggests that stimulation by PIA was accompanied by increasing the apparent affinity for Mg2+. Activation of adenylate cyclase by PIA was blocked by theophylline or 3-isobutyl- 1-methylxanthine (IBMX). The pH optimum for basal or (PIA + GTP)-stimulated activities was broad, with a peak between 8.5 and 9.5. In the presence of GTP, stimulation by an optimal concentration of PIA was additive, with maximal stimulation by the catecholamines. Phospholipase A2 treatment at a concentration of 1 U/ml for 5 min completely abolished the stimulatory effect of dopamine, whereas PIA-stimulated activity remained unaltered. These data suggest that rat brain striatum either has a single adenylate cyclase, which is stimulated by catecholamines and adenosine by distinct mechanisms, or has different cyclase populations, stimulated by either adenosine or catecholamines.  相似文献   

3.
The stability of dopamine-sensitive adenylate cyclase, guanylate cyclase, ATPase, and GTPase was measured in homogenates of rat striatal tissue frozen from 0 to 24 h postmortem. ATPase, GTPase, and Mg2+-dependent guanylate cyclase activities showed no significant change over this period. Mn2+-dependent guanylate cyclase activity was stable for 10 h postmortem. Basal and dopamine-stimulated adenylate cyclase activity decreased markedly during the first 5 h. However, when measured in washed membrane preparations, these adenylate cyclase activities remained stable for at least 10 h. Therefore, the postmortem loss of a soluble activator, such as GTP, may decrease the adenylate cyclase activity in homogenates. These results are not consistent with an earlier suggestion that there is a postmortem degradation of the enzyme itself. Other kinetic parameters of dopamine-sensitive adenylate cyclase can also be measured independently of postmortem changes. Thus, it is possible to investigate kinetic parameters of dopamine-sensitive adenylate cyclase, guanylate cyclase, ATPase, and GTPase in human brain obtained postmortem.  相似文献   

4.
The presence of adenosine receptors coupled to adenylate cyclase in rat heart sarcolemma is demonstrated in these studies. Heart sarcolemma was isolated by the hypotonic shock-Lithium bromide treatment method. This preparation contained negligible amounts (2-4%) of contamination by other subcellular organelles such as mitochondria, sarcoplasmic reticulum, and myofibrils as verified by electron microscopic examination. In addition this preparation was also devoid of endothelial cells, since angiotensin-converting enzyme activity was not detected in this preparation. N-Ethylcarboxamide adenosine (NECA), L-N6-phenylisopropyladenosine (PIA), and adenosine N'-oxide (Ado N'-oxide) were all able to stimulate adenylate cyclase in heart sarcolemma, but not in crude homogenate, with an apparent Ka of 3-7 microM. The activation of adenylate cyclase by NECA was dependent on the concentrations of metal ions such as Mg2+ or Mn2+. The maximal stimulation was observed at lower concentrations of the metal ions (0.2-0.5 mM). At 5 mM Mg2+ or Mn2+, the stimulation by NECA was completely abolished. The stimulatory effect of NECA on adenylate cyclase was also dependent on guanine nucleotides and was blocked by 3-isobutyl-1-methylxanthine. In addition, 2'-deoxyadenosine showed an inhibitory effect on adenylate cyclase. The myocardial adenylate cyclase was also stimulated by beta-adrenergic agonists, dopamine and glucagon, and inhibited by cholinergic agonists such as carbachol and oxotremorine. The stimulation of adenylate cyclase by NECA was found to be additive with maximal stimulation obtained by epinephrine. These data suggest that rat heart sarcolemma contains adenosine (Ra), beta-adrenergic, dopaminergic, glucagon, and cholinergic receptors, and the stimulation of adenylate cyclase by epinephrine and adenosine occurs by distinctly different mechanism or adenosine and epinephrine stimulate different cyclase populations.  相似文献   

5.
The existence of adenosine receptors coupled to adenylate cyclase in cultured vascular smooth muscle cells from rat aorta is demonstrated in these studies. Adenosine, N6-phenylisopropyladenosine, adenosine N′-oxide and 2-chloroadenosine stimulated adenylate cyclase in a concentration dependent manner. The stimulation was dependent on the presence of guanine nucleotides and was blocked by 3-isobutyl-1-methylxanthine. In contrast, 2′ deoxyadenosine inhibited adenylate cyclase activity. Adenosine and 2-chloroadenosine showed a biphasic effect on adenylate cyclase, stimulation occurred at low concentrations. The activation of adenylate cyclase by N6-phenylisopropyladenosine was also dependent on the Mg2+ concentration. The data suggest that vascular smooth muscle cells have both “Ra” and “P” receptors for adenosine, and it can be postulated that the relaxant effect of adenosine on vascular smooth muscle may be mediated by its interaction with “Ra” receptors associated with adenylate cyclase.  相似文献   

6.
Radioligand binding studies have previously identified a high affinity, magnesium-dependent, guanine nucleotide-sensitive binding site for corticotropin-releasing factor (CRF) in mouse spleen. In order to determine the functional nature of these CRF binding sites, we examined the effects of CRF on adenylate cyclase activity in mouse spleen homogenates. The stimulation of adenylate cyclase activity was dependent on time, tissue protein concentration, and guanine nucleotides. CRF-stimulated adenylate cyclase activity was evident in the presence of guanosine-5'-triphosphate (GTP) and its precursor guanosine-5'-diphosphate (GDP) but was not detected in the presence of the hydrolysis-resistant GTP analogs, guanyl-5'-imidodiphosphate [Gpp(NH)p] and guanosine-5'-gamma-thiotriphosphate (GTP-gamma-S). The rank order of potency for CRF analogs and fragments in stimulating adenylate cyclase activity was comparable to their affinities for CRF binding sites in mouse spleen homogenates. The putative receptor antagonist, alpha helical ovine CRF(9-41), did not stimulate adenylate cyclase activity but did attenuate the stimulation by various concentrations of rat/human CRF. In summary, these data demonstrate the functional nature of CRF receptors in mouse spleen as evidenced by CRF stimulation of cAMP production and suggest that this peptide may play a physiological role in regulating immune function.  相似文献   

7.
Adenylate Cyclase Activity in the Superior Cervical Ganglion of the Rat   总被引:2,自引:2,他引:0  
Abstract: Adenylate cyclase activity in cell-free homogenates of the rat superior cervical ganglion (SCG) was assayed under a variety of experimental conditions. Adenylate cyclase activity was decreased by approximately one-half when 1 m M EGTA was included in the homogenization buffer and assay mixture, indicating the presence of a Ca2+-sensitive adenylate cyclase in the ganglion. In the presence of EGTA, basal adenylate cyclase activity in homogenates of the SCG was 12.9 ± 0.6 pmol cyclic AMP/ganglion/10 min. Enzyme activity was stimulated three- to fourfold by 10 m M NaF or 10 m M MnCl2, Both GTP and its nonhydrolyzable analog guanylylimidodiphosphate (GppNHp) stimulated adenylate cyclase in a concentration-dependent manner over the range of 0.1–10.0 μ M . Stimulation by GppNHp was five to six times greater than that produced by GTP at all concentrations tested. Decentralization of the ganglion had no effect on basal or stimulated adenylate cyclase activity. Receptor-linked stimulation of adenylate cyclase was not obtained with any of the following: isoproterenol, epi-nephrine, histamine, dopamine, prostaglandin E2, or va-soactive intestinal peptide. Thus the receptor-linked regulation of adenylate cyclase activity appears to be lost in homogenates of the ganglion.  相似文献   

8.
Salivary-gland homogenates contain 5-hydroxytryptamine-stimulated adenylate cyclase. Half-maximal stimulation was obtained with 0.1 microM-5-hydroxytryptamine in the presence of added guanine nucleotides. Gramine antagonized the stimulation of cyclase caused by 5-hydroxytryptamine. In the presence of hormone, guanosine 5'-[gamma-thio]triphosphate produced a marked activation of adenylate cyclase activity. Stimulation of adenylate cyclase by forskolin or fluoride did not require the addition of guanine nucleotides or hormone. In the presence of EGTA, Ca2+ produced a biphasic activation of cyclase activity. Ca2+ at 1-100 microM increased activity, whereas 2000 microM-Ca2+ inhibited cyclase activity. The neuroleptic drugs trifluoperazine and chlorpromazine non-specifically inhibited adenylate cyclase activity even in the absence of Ca2+. The cyclic AMP phosphodiesterase activity in homogenates was not affected by Ca2+ or exogenous calmodulin. This enzyme was also inhibited by trifluoperazine in the absence of Ca2+. These results indicate that Ca2+ elevates adenylate cyclase activity, but had no effect on cyclic AMP phosphodiesterase of salivary-gland homogenates.  相似文献   

9.
The stimulation of adenylate cyclase by various exogenous proteases has been described in several tissues. In this study, we describe a 2 to 7-fold increase of adenylate cyclase activity in a particulate preparation from rat platelets following prior exposure of the homogenate to calcium. Calmodulin alone was unable to increase the adenylate cyclase activity and trifluoperazine only partially inhibited the calcium-dependent activation. On the other hand, calcium had a slight stimulatory effect on the particulate preparation but this activation was greatly enhanced by the addition of supernatant. Only the combined addition of calcium, supernatant and calmodulin to washed particulate preparations reconstituted the activation seen in homogenates. The activation was significantly inhibited by leupeptin and thiol reagents. It is concluded that platelets contain a calcium-dependent protease-like activity that is able to increase adenylate cyclase activity in membrane fractions. This phenomenon may be involved in the regulation of adenylate cyclase activity in platelets.  相似文献   

10.
Abstract— Mn2+ caused an 8-to 16-fold stimulation of adenylate cyclase activity in homogenates as well as synaptosomcs. isolated synaptic membranes, and slices prepared from rat brain. The stimulation occurred at low concentrations of Mn2+. with a doubling of activity at 50-60μM. and was unaffected by a 60-fold excess of Mg2+. Whether or not Mg2+ was added, inclusion of a low concentration of Mn2+ reduced, but did not prevent the stimulation of adenylate cyclase caused by dopaminc in homogenates of corpus striatum. In contrast, Ca2+. at a concentration that had little effect on basal cyclase activity, completely prevented the stimulation by dopamine. The increase of cyclase activity produced by Mn2+ in brain homogenates was potentiated by F?. Other ions, notably Hg2+. Pb2+. Cu2+ and Zn2+. in order of decreasing potency, inhibited both basal and Mn2--stimulated cyclase activity. It is proposed that the effect of Mn2+ on adenylate cyclase activity may involve only the catalytic subunit of the enzyme, and that the mechanism is different from that by which either dopamine or F? stimulates the enzyme. These results suggest that the effects of low concentrations of Mn2+ and certain other divalent metal ions on adenylate cyclase activity may be involved in their neuropsychiatrie or other toxic effects, and that such ions may also participate in normal physiological mechanisms involving cyclic nucleotides.  相似文献   

11.
In cellular systems provided with activatory (Ra-site) receptors for adenosine, such as rat cerebral microvessels and rat liver plasma membranes, the adenosine-receptor antagonist 8-phenyltheophylline (10 microM) significantly decreased adenylate cyclase activity if ATP was the substrate and only if GTP was present. With dATP as substrate, adenylate cyclase activities in both preparations remained unaffected by 8-phenyltheophylline. In rat cerebral-cortical membranes, with inhibitory (Ri-site) receptors for adenosine, 8-phenyltheophylline significantly enhanced adenylate cyclase activity only in the presence of GTP and if ATP was the substrate. In rat cardiac ventricular membranes, which are devoid of any adenylate cyclase-coupled adenosine receptor, the methylxanthine had no GTP-dependent effect, irrespective of the substrate used. All assay systems contained sufficiently high amounts of adenosine deaminase (2.5 units/ml), since no endogenous adenosine, formed from ATP, was found chromatographically. In order to demonstrate a direct influence of phosphorylated adenosine derivatives on adenylate cyclase activity, we investigated AMP in a dATP assay system. AMP was verified chromatographically to remain reasonably stable under the adenylate cyclase assay conditions. In the microvessels, AMP increased enzyme activity in the range 0.03-1.0 mM, an effect competitively antagonized by 8-phenyltheophylline. In the cortical membranes, 0.1 mM-AMP inhibited adenylate cyclase, which was partially reversed by the methylxanthine. The presence of GTP was again necessary for all observations. In the ventricular membranes, AMP had no effect. Since the efficacy of adenosine-receptor agonists and, probably, that of other hormones on adenylate cyclase activity can be more efficiently measured with dATP as the enzyme substrate, this nucleotide seems preferable for adenylate cyclase measurements in systems susceptible to modulation by adenosine.  相似文献   

12.
1. Renal tubular membranes from rat kidneys were prepared, and adenylate cyclase activity was measured under basal conditions, after stimulation by NaF or salmon calcitonin. Apparent Km value of the enzyme for hormone-linked receptor was close to 1 x 10(-8) M. 2. The system was sensitive to temperature and pH. pH was found to act both on affinity for salmon calcitonin-linked receptor and maximum stimulation, suggesting an effect of pH on hormone-receptor binding and on a subsequent step. 3. KCl was without effect areas whereas CoCl and CaCl2 above 100 muM and MnCl2 above 1 muM inhibited F- -and salmon calcitonin-sensitive adenylate cyclase activities. The Ca2+ inhibition of the response reflected a fall in maximum stimulation and not a loss of affinity of salmon calcitonin-linked receptor for the enzyme. 4. The measurement of salmon calcitonin-sensitive adenylate cyclase activity as a function of ATP concentration showed that the hormone increases the maximum velocity of the adenylate cyclase. GTP, ITP and XTP at 200 muM did not modify basal, salmon calcitonin- and parathyroid hormone-sensitive adenylate cyclase activities. 5. Basal, salmon calcitonin- and F- -sensitive adenylate cyclase activities decreased at Mg2+ concentrations below 10 mM. High concentrations of Mg2+ (100 mM) led to an inhibition of the F- -stimulated enzyme. 6. Salmon calcitonin-linked receptor had a greater affinity for adenylate cyclase than human or porcine calcitonin-linked receptors. There was no additive effect of these three calcitonin peptides whereas parathyroid hormone added to salmon calcitonin increased adenylate cyclase activity, thus showing that both hormones bound to different membrane receptors. Human calcitonin fragments had no effect on adenylate cyclase activity. 7. Salmon calcitonin-stimulated adenylate cyclase activity decreased with the preincubation time. This was due to progressive degradation of the hormone and not to the rate of binding to membrane receptors.  相似文献   

13.
Chlorpromazine, haloperidol and clozapine are approximately equipotent in antagonizing dopamine sensitive adenylate cyclase activity in homogenates of rat brain striatum, in contrast to the differences in clinical antipsychotic potencies reported by others. The antagonism appeared to occur at a structurally specific dopamine site, as inhibition by a series of chlorpromazine analogues of similar hydrophobicity exhibited a structural specificity similar to that found for their neuroleptic and cataleptic activities. Sulpiride, a dopamine antagonist with antipsychotic activity, and metoclopramide, a structurally related central dopamine antagonist, failed to inhibit the dopamine sensitive adenylate cyclase. Pre-treatment of rats with haloperidol (3 mg/kg per day) for 6 or 28 days did not induce a supersensitive response of the adenylate cyclase to stimulation by dopamine or apomorphine or inhibition by clozapine. It was concluded that the dopamine sensitive adenylate cyclase may not be the site of action of all anti-psychotic agents.  相似文献   

14.
Dopaminergic Mechanisms in the Teleost Retina   总被引:12,自引:6,他引:6  
A specific dopamine-sensitive adenylate cyclase has been identified in homogenates of the teleost (carp) retina. Maximal stimulation by 100 microM-dopamine resulted in a 5--10-fold increase in adenylate cyclase activity with half-maximal stimulation occurring at a concentration of 1 microM. l-Noradrenaline and l-adrenaline were some 10 times less potent than dopamine whilst the alpha- and beta-adrenoreceptor agonists, l-phenylephrine and dl-isoprenaline were inactive. Apomorphine elicited a partial stimulation of adenylate cyclase activity whilst various ergot alkaloids produced mixed agonist/antagonist responses. Dopamine-stimulated adenylate cyclase activity was potently antagonised by various neuroleptic drugs including fluphenazine, alpha-flupenthixol and alpha-piflutixol, and to a lesser extent by the butyrophenone derivatives haloperidol and spiperone. The benzamide derivatives, metoclopramide and sulpiride, together with the alpha- and beta-adrenoreceptor blocking agents, phentolamine and propranolol respectively were essentially inactive at blocking dopamine-stimulated adenylate cyclase activity. These data suggest the presence of a highly specific dopamine-sensitive adenylate cyclase in homogenates of teleost retina possessing similar pharmacological properties to the dopamine-sensitive adenylate cyclase observed in the mammalian central nervous system.  相似文献   

15.
The stimulatory and inhibitory effects of adenosine on the adenylate cyclases of human and pig platelets were studied. Stimulation occurred at lower concentrations than did inhibition, and the stimulatory effect was prevented by methylxanthines. Stimulation by adenosine was immediate in onset and was reversible, under conditions when cyclic AMP formation was linear with respect to time and protein concentration. The stimulatory and inhibitory effects could be distinguished further by the use of various analogues of adenosine and could be prevented by adenosine deaminase. The data suggest that both stimulation and inhibition were due to adenosine itself and not one of its degradation products and that in the platelet preparation, neither formation nor degradation of adenosine during the adenylate cyclase incubation appreciably influenced measured activity. Stimulation by adenosine was additive with the effects of GMP-P(NH)P, and alpha- or beta-adrenergic stimulation, but was abolished by prostaglandin E1 or by NaF. Prostaglandin E1 and NaF increased the sensitivity of adenylate cyclase to inhibition by adenosine. The data suggest that guanyl-5'-yl-(beta-gamma-imino)diphosphate and/or adrenergic stimulation and adenosine exert their effects on adenylate cyclase by distinct mechanisms, but that prostaglandin E1 or F- and adenosine increase enzyme activity by mechanisms which may involve common intermediates in the coupling to adenylate cyclase.  相似文献   

16.
Adenylate cyclase activity in rat adipocyte suspensions was assayed in situ using a digitonin permeabilization technique. Recovery of activity was dependent on digitonin concentration, reaching a maximum at 20 micrograms/ml digitonin and paralleling the effect on cell permeability. Maximum adenylate cyclase activity recovered in permeabilized cells was 75% of that in comparable homogenates. Isoproterenol, a beta-adrenergic agonist, activated adenylate cyclase by 1.4, 2.2 and 4.5 fold at 10(-6), 10(-5) and 10(-3) M, respectively, despite perturbation of the plasma membrane. Exogenous GTP was not required for expression of beta-adrenergic activation, but 10(-5) M GTP maximally increased both basal and isoproterenol-dependent activity. The response to 10(-6) M isoproterenol was increased 2.1 fold by 10(-5) M GTP. N6-(Phenylisopropyl)adenosine at 10(-6) M inhibited both basal and isoproterenol-dependent adenylate cyclase activity by approximately 30%, demonstrating that the adenosine-dependent inhibitory pathway (Ni) remained functional in the digitonin-permeabilized cells. In situ analysis of adenylate cyclase is not only simple and rapid, but provides a unique approach to studying regulation of this key enzyme.  相似文献   

17.
The effect of adenosine in insulin secretion and adenylate cyclase activity of rat islets of Langerhans was investigated. Adenosine inhibited insulin secretion stimulated by glucose, glucagon, prostaglandin E2, tolbutamine and theophylline. Adenosine decreased basal adenylate cyclase activity of the islets as well as that stimulated by glucagon prostaglandin E2 and GTP, although fluoride-stimulated activity was not affected. Neither insulin secretion nor adenylate cyclase activity of the islets was affected by adenine, AMP or ADP. The inhibitory effect of adenosine on adenylate cyclase activity was not altered by either phenoxybenzamine (alpha-adrenergic blocker) or propranolol (beta-adrenergic blocker), suggesting that the effect is not mediated through the adrenergic receptors of the islet cells. These results suggest that the intracellular concentration of adenosine in the beta-cell may play a role in regulating insulin secretion and that this effect may be mediated via alterations in the activity of adenylate cyclase in the beta-cell.  相似文献   

18.
The effect of vasopressin on adenylate cyclase activity was measured in the homogenates of selected rat brain regions. Adenylate cyclase activity in homogenate of the caudate nucleus did not change significantly with various concentrations of vasopressin. Furthermore, vasopressin did not reliably alter adenylate cyclase activity in various brain regions. Vasopressin in low concentrations significantly enhanced the activation of caudate adenylate cyclase activity by dopamine. This effect of vasopressin was dose dependent. Maximal enhancement by vasopressin occurred at 100 microM vasopressin. These results indicate that vasopressin may not have a direct effect on brain adenylate cyclase activity but appears to modulate the action of dopamine on brain adenylate cyclase.  相似文献   

19.
Incubation of rat extraorbital lacrimal gland slices with the beta-agonist isoproterenol caused peroxidase secretion but no K+ release. The peroxidase secretion was inhibited by propranolol. Addition of dibutyryl cyclic AMP or adenosine 3'5'-cyclic phosphorothioate to lacrimal slices produced peroxidase secretion at a higher rate than that obtained with optimal concentration of isoproterenol. Methyl isobutylxanthine is also a strong stimulator of peroxidase secretion. Peroxidase activity was determined by a modified sensitive guaiacol method. Membrane fraction of lacrimal cells was shown to contain an isoproterenol-stimulated adenylate cyclase activity. It is therefore suggested that there is a beta-adrenergic receptor in the rat lacrimal gland and that its stimulation causes activation of an adenylate cyclase which leads to peroxidase secretion.  相似文献   

20.
In rat olfactory bulb homogenate, carbachol stimulated adenylate cyclase activity in a concentration-dependent manner (EC50 = 1.1 microM). The carbachol stimulation occurred fully in membranes that had been prepared in the presence of 1 mM EGTA and incubated in a Ca2(+)-free enzyme reaction medium. Under these conditions, exogenous calmodulin (1 microM) failed to stimulate adenylate cyclase activity. In miniprisms of olfactory bulb, carbachol (1 mM) increased accumulation of inositol phosphates, but this response was markedly reduced in a Ca2(+)-free medium. Moreover, the carbachol stimulation of adenylate cyclase activity was not affected by staurosporine at a concentration (1 microM) that completely blocked the stimulatory effect of phorbol 12-myristate 13-acetate, an activator of Ca2+/phospholipid-dependent protein kinase. Quinacrine, a nonselective phospholipase A2 inhibitor, reduced the carbachol stimulation of adenylate cyclase activity, but this inhibition appeared to be competitive with a Ki of 0.2 microM. Nordihydroguaiaretic acid and indomethacin, two inhibitors of arachidonic acid metabolism, failed to affect the carbachol response. These results indicate that in rat olfactory bulb, muscarinic receptors stimulate adenylate cyclase activity through a mechanism that is independent of Ca2+ and phospholipid hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号