首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background:

N-Acyl homoserine lactone (AHL) is found to be the main component of quorum sensing (QS) in Gram-negative bacteria and plays an important role in biofilm formation. Little information is available regarding the role of AHL in biofilm formation in Escherichia coli (E. coli). The purpose of this investigation was to biochemically detect and characterize AHL activity in biofilm-forming uropathogenic E. coli (UPEC) isolated from urine samples of the patients with urinary tract infections (UTIs) in Kerman, Iran.

Methods:

Thirty-five UPEC isolates were obtained from urine samples of the patients with UTIs referred to the Afzalipoor hospital. The isolates were identified by biochemical tests. Biofilm analyses of all the isolates were performed using the microtiter plate method at OD 490nm. N-Acyl homoserine lactone was separated from cell mass supernatants by liquid-liquid extraction (LLE) and analyzed by a colorimetric method. N-Acyl homoserine lactone functional groups were identified by Fourier Transform-Infrared Spectroscopy (FT-IR).

Results:

The biofilm formation assay identified 10 (28.57%) isolates with strong, 16 (45.71%) with moderate, and 9 (25.71%) with weak biofilm activities. The UPEC isolates with strong and weak biofilm activities were subjected to AHL analyses. It was found that isolates with the highest AHL activities also exhibited strong adherence to microplate wells (P≤0.05). Two E. coli isolates with the highest AHL activities were selected for FT-IR spectroscopy. Peaks at 1764.33, 1377.99, and 1242.90 cm-1 correspond to the C=O bond of the lactone ring, and the N=H and C-O bonds of the acyl chain, respectively.

Conclusion:

We found that many UPEC isolates exhibited strong biofilm formation. The control of this property by AHL may contribute to the pathogenesis of the organism in UTI’s.Key Words: Biofilm, FT-IR, N-acylhomoserine lactone, Uropathogenic Escherichia coli  相似文献   

2.
Uropathogenic Escherichia coli (UPEC), the causative agent of approximately 85% of urinary tract infections (UTI), is a major health concern primarily affecting women. During infection, neutrophils infiltrate the bladder, but the mechanism of recruitment is not well understood. Here, we investigated the role of UPEC-induced cytokine production in neutrophil recruitment and UTI progression. We first examined the kinetics of cytokine expression during UPEC infection of the bladder, and their contribution to neutrophil recruitment. We found that UPEC infection induces expression of several pro-inflammatory cytokines including granulocyte colony-stimulating factor (G-CSF, CSF-3), not previously known to be involved in the host response to UTI. G-CSF induces neutrophil emigration from the bone marrow; these cells are thought to be critical for bacterial clearance during infection. Upon neutralization of G-CSF during UPEC infection, we found fewer circulating neutrophils, decreased neutrophil infiltration into the bladder and, paradoxically, a decreased bacterial burden in the bladder. However, depletion of G-CSF resulted in a corresponding increase in macrophage-activating cytokines, such as monocyte chemotactic protein-1 (MCP-1, CCL-2) and Il-1beta, which may be key in host response to UPEC infection, potentially resolving the paradoxical decreased bacterial burden. Thus, G-CSF acts in a previously unrecognized role to modulate the host inflammatory response during UPEC infection.  相似文献   

3.
Entry into host cells is required for many bacterial pathogens to effectively disseminate within a host, avoid immune detection and cause disease. In recent years, many ostensibly extracellular bacteria have been shown to act as opportunistic intracellular pathogens. Among these are strains of uropathogenic Escherichia coli (UPEC), the primary causative agents of urinary tract infections (UTIs). UPEC are able to transiently invade, survive and multiply within the host cells and tissues constituting the urinary tract. Invasion of host cells by UPEC is promoted independently by distinct virulence factors, including cytotoxic necrotizing factor, Afa/Dr adhesins, and type 1 pili. Here we review the diverse mechanisms and consequences of host cell invasion by UPEC, focusing also on the impact of these processes on the persistence and recurrence of UTIs.  相似文献   

4.
The serogroups of 396 necrotizing Escherichia coli of human and bovine origin isolated in Spain between 1979 and 1991 have been determined. The 270 cytotoxic necrotizing factor strains belonged to 22 different O serogroups; however, 84% (226 of 270) were of one of seven serogroups (O2, O4, O6, O14, O22, O75 and O83). Although necrotizing E. coli producing cytotoxic necrotizing factor 2 belonged to 28 different serogroups, only six of them (O1, O3, O15, O55, O88 and O123) accounted for 60% (76 of 126) of cytotoxic necrotizing factor 2 strains. Furthermore, only 3% (4 of 126) of cytotoxic necrotizing factor 2 strains belonged to serogroups most common among strains producing cytotoxic necrotizing factor 1. The majority of necrotizing E. coli producing cytotoxic necrotizing factor 1 were obtained from human extraintestinal infections, whereas cytotoxic necrotizing factor 2 strains were isolated from stools of healthy and diarrhoeic calves.  相似文献   

5.
Urinary tract infections in young, healthy women frequently recur, despite their traditional classification as acute infections. Conventional wisdom dictates that uropathogens causing recurrent infections in such individuals come from the fecal or vaginal flora, in the same manner as the initial infection. However, recent studies of uropathogenic Escherichia coli have found that it can carry out a complex developmental program within the superficial epithelial cells of the mouse bladder, forming intracellular bacterial communities with many biofilm-like properties. These intracellular biofilms allow the bacteria to outlast a strong host immune response to establish a dormant reservoir of pathogens inside the bladder cells. Re-emergence of bacteria from this reservoir might be the source of recurrent infection.  相似文献   

6.
A strain of Escherichia coli originally isolated from urine of a patient with acute pyelonephritis was studied in detail for binding to glycosphingolipids. Bacteria labeled metabolically with [14C]glucose were layered over a glycolipid chromatogram and bound bacteria were detected by autoradiography. The detection was down to a few ng of glycolipid (pmol level) under these assay conditions. At a test level of 500 ng all glycolipids (more than a dozen molecular species analyzed) with Gal alpha 1----4Gal as an internal or terminal part bound the bacteria strongly while glycolipids known to lack this sequence were negative. Conformational analysis using hard sphere calculations including the exo-anomeric effect showed a bend in the saccharide chain at this disaccharide with a largely hydrophobic surface of the convex side, probably being part of the binding epitope. Mixtures of glycolipids isolated from a human ureter scraping and from urinary sediments bound bacteria in the 2- to 7-sugar interval. Thus, this infectious strain of E. coli recognizes glycolipids being present in epithelial cells lining the urinary tract.  相似文献   

7.
To determine virulence-related genes in uropathogenic Escherichia coli (UPEC) showing invasiveness to T-24 bladder cancer cells, genomic subtractive hybridization was performed between a highly invasive and a less invasive strain. Forty-nine DNA fragments were isolated from the invasive strain. One of them showed homology with Salmonella invA gene. By chromosomal walking of the strain, a type III secretion system that has been described in E. coli O157:H7 was identified on the genome of the invasive strains. Three strains out of 100 UPEC isolates had a type III secretion system inserted at 64 min of the chromosome, corresponding to E. coli K-12 MG1655. This finding suggested that the type III secretion system could play a part in uropathogenicity of UPEC.  相似文献   

8.
The human antibody response to uropathogenic Escherichia coli: a review   总被引:5,自引:0,他引:5  
Urinary tract infections caused by Escherichia coli are associated with a local and systemic antibody response. We have studied the serum and urine antibody responses to Escherichia coli in men and women with pyelonephritis, cystitis, and asymptomatic bacteriuria. Protein immunoblots consistently demonstrated serum antibody response to lipopolysaccharide (LPS). Anti-LPS antibody titres rose significantly and progressively when comparing acute with convalescent sera in those who have had their first urinary infection. For those with repeated infections, high titre LPS antibodies were present and did not change significantly between acute and convalescent sera. Antibody responses to the major outer membrane proteins were present but did not differ significantly when compared with normal human serum. A specific anti-P pilus antibody response was demonstrated by immunoblotting. Anti-P pilus antibody was quantitated using ELISA and the titres were found to be very low. Three other techniques were also used to demonstrate the presence of serum antibody. Antibody was detectable by immunofluorescence, but the antigenic specificity of the antibody was more difficult to ascertain. Immunoprecipitation was more specific for determining the nature of the antibody response. Lastly, immunoelectron microscopy was valuable in demonstrating antipilus and antiflagellar antibodies. Immunoelectron microscopy and immunoblotting provided evidence that human antiserum to P pili was modestly cross-reactive and could bind heterologous P pili. These studies indicated that the major antibody response in humans occurs after pyelonephritis and is directed against LPS. An anti-P pilus response is frequently present and is cross-reactive to some extent with other P pili.  相似文献   

9.
10.
Uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, typically express filamentous adhesive organelles called type 1 pili that mediate both bacterial attachment to and invasion of bladder urothelial cells. Several host proteins have previously been identified as receptors for type 1 pili, but none have been conclusively shown to promote UPEC entry into host bladder cells. Using overlay assays with FimH, the purified type 1 pilus adhesin, and mass spectroscopy, we have identified beta1 and alpha3 integrins as key host receptors for UPEC. FimH recognizes N-linked oligosaccharides on these receptors, which are expressed throughout the urothelium. In a bladder cell culture system, beta1 and alpha3 integrin receptors co-localize with invading type 1-piliated bacteria and F-actin. FimH-mediated bacterial invasion of host bladder cells is inhibited by beta1 and alpha3 integrin-specific antibodies and by disruption of the beta1 integrin gene in the GD25 fibroblast cell line. Phosphorylation site mutations within the cytoplasmic tail of beta1 integrin that alter integrin signaling also variably affect UPEC entry into host cells, by either attenuating or boosting invasion frequencies. Furthermore, focal adhesion and Src family kinases, which propagate integrin-linked signaling and downstream cytoskeletal rearrangements, are shown to be required for FimH-dependent bacterial invasion of target host cells. Cumulatively, these results indicate that beta1 and alpha3 integrins are functionally important receptors for type 1 pili-expressing bacteria within the urinary tract and possibly at other sites within the host.  相似文献   

11.
Classical collectins (surfactant protein A and D) play a significant role in innate immunity and host defence in uropathogenic Escherichia coli (UPEC)-induced urinary tract infection (UTI). However, the functions of collectin-11 (CL-11) with respect to UPEC and UTI remain largely unexplored. This study aimed to investigate the effect of CL-11 on UPEC and its role in UTI. We further examined its modulatory effect on inflammatory reactions in proximal tubular epithelial cells (PTECs). The present study provides evidence for the effect of CL-11 on the growth, agglutination, binding, epithelial adhesion and invasion of UPEC. We found increased basal levels of phosphorylated p38 MAPK and human cytokine homologue (keratinocyte-derived chemokine) expression in CL-11 knockdown PTECs. Furthermore, signal regulatory protein α blockade reversed the increased basal levels of inflammation associated with CL-11 knockdown in PTECs. Additionally, CL-11 knockdown effectively inhibited UPEC-induced p38 MAPK phosphorylation and cytokine production in PTECs. These were further inhibited by CD91 blockade. We conclude that CL-11 functions as a mediator of innate immunity via direct antibacterial roles as well as dual modulatory roles in UPEC-induced inflammatory responses during UTI. Thus, the study findings suggest a possible function for CL-11 in defence against UTI.  相似文献   

12.
Adhesion and entry of uropathogenic Escherichia coli   总被引:6,自引:1,他引:6  
To effectively colonize a host animal and cause disease, many bacterial pathogens have evolved the mechanisms needed to invade and persist within host cells and tissues. Recently it was discovered that uropathogenic Escherichia coli, the primary causative agent of urinary tract infections, can invade and replicate within uroepithelial cells. This can provide E. coli with a survival advantage, allowing the microbes to better resist detection and clearance by both innate and adaptive immune defence mechanisms. Adhesive organelles, including type 1, P, and S pili along with Dr adhesins, promote both bacterial attachment to and invasion of host tissues within the urinary tract. Interactions mediated by these adhesins can also stimulate a number of host responses that can directly influence the outcome of a urinary tract infection.  相似文献   

13.
14.
Escherichia coli is the leading cause of urinary tract infections (UTIs). Despite the association of numerous bacterial factors with uropathogenic E. coli (UPEC), few such factors have been proved to be required for UTI in animal models. Previous investigations of urovirulence factors have relied on prior identification of phenotypic characteristics. We used signature-tagged mutagenesis (STM) in an unbiased effort to identify genes that are essential for UPEC survival within the murine urinary tract. A library of 2049 transposon mutants of the prototypic UPEC strain CFT073 was constructed using mini-Tn5km2 carrying 92 unique tags and screened in a murine model of ascending UTI. After initial screening followed by confirmation in co-infection experiments, 19 survival-defective mutants were identified. These mutants were recovered in numbers 101- to 106-fold less than the wild type in the bladder, kidneys or urine or at more than one site. The transposon junctions from each attenuated mutant were sequenced and analysed. Mutations were found in: (i) the type 1 fimbrial operon; (ii) genes involved in the biosyn-thesis of extracellular polysaccharides including group I capsule, group II capsule and enterobacterial common antigen; (iii) genes involved in metabolic pathways; and (iv) genes with unknown function. Five of the genes identified are absent from the genome of the E. coli K-12 strain. Mutations in type 1 fimbrial genes resulted in severely attenuated colonization, even in the case of a mutant with an insertion upstream of the fim operon that affected the rate of fimbrial switching from the 'off' to the 'on' phase. Three mutants had insertions in a new type II capsule biosynthesis locus on a pathogenicity island and were impaired in the production of capsule in vivo. An additional mutant with an insertion in wecE was unable to synthesize enterobacterial common antigen. These results confirm the pre-eminence of type 1 fimbriae, establish the importance of extracellular polysaccharides in the pathogenesis of UTI and identify new urovirulence determinants.  相似文献   

15.
The presence of cytotoxic necrotizing factor 1 (CNF1), together with various associated virulence factors (alpha-haemolysin, P-, S- and A-fimbriae), was screened in 175 uropathogenic Escherichia coli strains isolated from hospitalized adult patients. The cnf1 gene was detected in 30% of the selected strains independently of the severity of the clinical urinary infection. A significant association between CNF1, haemolytic activity and the products of the pap/sfa genes was found. However, CNF1 appeared not to play a major role in nosocomial E. coli urinary tract infections.  相似文献   

16.
17.
18.
Bladder infections affect millions of people yearly, and recurrent symptomatic infections (cystitis) are very common. The rapid increase in infections caused by multidrug-resistant uropathogens threatens to make recurrent cystitis an increasingly troubling public health concern. Uropathogenic Escherichia coli (UPEC) cause the vast majority of bladder infections. Upon entry into the lower urinary tract, UPEC face obstacles to colonization that constitute population bottlenecks, reducing diversity, and selecting for fit clones. A critical mucosal barrier to bladder infection is the epithelium (urothelium). UPEC bypass this barrier when they invade urothelial cells and form intracellular bacterial communities (IBCs), a process which requires type 1 pili. IBCs are transient in nature, occurring primarily during acute infection. Chronic bladder infection is common and can be either latent, in the form of the quiescent intracellular reservoir (QIR), or active, in the form of asymptomatic bacteriuria (ASB/ABU) or chronic cystitis. In mice, the fate of bladder infection, QIR, ASB, or chronic cystitis, is determined within the first 24 h of infection and constitutes a putative host-pathogen mucosal checkpoint that contributes to susceptibility to recurrent cystitis. Knowledge of these checkpoints and bottlenecks is critical for our understanding of bladder infection and efforts to devise novel therapeutic strategies.  相似文献   

19.
Fifty nine Escherichia coli strains obtained from patients with upper or lower urinary tract infections (UTI) and 30 E. coli strains isolated from stools of healthy individuals were tested for hemolytic and cytotoxic activities. Forty four percent of uropathogenic E. coli (UPEC) and 3.3% of fecal E. coli were hemolytic. Among the hemolytic UPEC, 92% produced alpha-hemolysin. A cytotoxic activity was detected in culture filtrates of 71% of UPEC strains and 30% of fecal E. coli. No relationship was found between cytotoxic and hemolytic activities or between cytotoxic titers and UPEC origin (upper or lower UTI). E. coli cytotoxin has a cytocidal activity against some epithelioid cultured cell lines (Vero, HeLa and Hep-2) but was almost inactive for avian-fibroblast cells. Cytotoxin-affected cells appeared rounded, refractile and detached from the surface of the vessel. Some characteristics exhibited by the cytotoxin as the morphological response induced on cells, the increasing of cytopathic effect with time, its irreversible cytocidal activity and its heat-lability resemble the properties described for E. coli Verotoxin (VT). Adherence to uroepithelial cells is recognized as a virulence factor for UPEC. It is suggested that cell damage by cytotoxic and adhering UPEC might contribute to E. coli virulence to urinary tract.  相似文献   

20.
Rho GTPases, which are master regulators of both the actin cytoskeleton and membrane trafficking, are often hijacked by pathogens to enable their invasion of host cells. Here we report that the cytotoxic necrotizing factor-1 (CNF1) toxin of uropathogenic Escherichia coli (UPEC) promotes Rac1-dependent entry of bacteria into host cells. Our screen for proteins involved in Rac1-dependent UPEC entry identifies the Toll-interacting protein (Tollip) as a new interacting protein of Rac1 and its ubiquitinated forms. We show that knockdown of Tollip reduces CNF1-induced Rac1-dependent UPEC entry. Tollip depletion also reduces the Rac1-dependent entry of Listeria monocytogenes expressing InlB invasion protein. Moreover, knockdown of Tollip, Tom1 and clathrin, decreases CNF1 and Rac1-dependent internalization of UPEC. Finally, we show that Tollip, Tom1 and clathrin associate with Rac1 and localize at the site of bacterial entry. Collectively, these findings reveal a new link between Rac1 and Tollip, Tom1 and clathrin membrane trafficking components hijacked by pathogenic bacteria to allow their efficient invasion of host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号