首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Raw-starch-digesting enzyme (RSDA) was immobilized on Amberlite beads by conjugation of glutaraldehyde/ polyglutaraldehyde (PG)-activated beads or by crosslinking. The effect of immobilization on enzyme stability and catalytic efficiency was evaluated. Immobilization conditions greatly influenced the immobilization efficiency. Optimum pH values shifted from pH 5 to 6 for spontaneous crosslinking and sequential crosslinking, to pH 6-8 for RSDA covalently attached on polyglutaraldehyde-activated Amberlite beads, and to pH 7 for RSDA on glutaraldehyde-activated Amberlite. RSDA on glutaraldehyde-activated Amberlite beads had no loss of activity after 2 h storage at pH 9; enzyme on PG-activated beads lost 9%, whereas soluble enzyme lost 65% of its initial activity. Soluble enzyme lost 50% initial activity after 3 h incubation at 60 degrees C, whereas glutaraldehyde-activated derivative lost only 7.7% initial activity. RSDA derivatives retained over 90% activity after 10 batch reuse at 40 degrees C. The apparent Km of the enzyme reduced from 0.35 mg/ml to 0.32 mg/ml for RSDA on glutaraldehyde-activated RSDA but increased to 0.42 mg/ml for the PG-activated RSDA derivative. Covalent immobilization on glutaraldehyde Amberlite beads was most stable and promises to address the instability and contamination issues that impede the industrial use of RSDAs. Moreover, the cheap, porous, and non-toxic nature of Amberlite, ease of immobilization, and high yield make it more interesting for the immobilization of this enzyme.  相似文献   

2.
In this work Candida antarctica lipase type B (CALB) was immobilized on agarose and chitosan. The influence of activation agents (glycidol, glutaraldehyde and epichlorohydrin) and immobilization time (5, 24 and 72 h) on hydrolytic activity, thermal and alkaline stabilities of the biocatalyst was evaluated. Protein concentration and enzymatic activity in the supernatant were determined during the immobilization process. More active derivatives were attained when the enzymatic extract was first purified through dialysis. The highest activities achieved were: for agarose-glyoxyl (with glycidol), 845 U/g of gel, after 72 h of immobilization; for chitosan-glutaraldehyde and agarose-glutaraldehyde, respectively, 1209 U/g of gel and 2716 U/g of gel, after 5 h of immobilization. Thermal stability was significantly increased, when compared to the soluble enzyme: 20-fold for agarose-glyoxyl (with glycidol)-CALB, 18-fold for chitosan-glutaraldehyde-CALB and 21-fold for agarose-glutaraldehyde. The best derivative, 58-fold more stable than the soluble enzyme, was obtained when CALB was immobilized on chitosan activated in two steps, using glycidol and glutaraldehyde, 72 h immobilization time. The stabilization degree of the derivative increased with the immobilization time, an indication that a multipoint covalent attachment between enzyme and the support had really occurred.  相似文献   

3.
Trypsin was immobilized on chitosan gels coagulated with 0.1 or 1 M NaOH and activated with glutaraldehyde or glycidol. The derivatives were characterized by their recovered activity, thermal (40, 55 and 70 degrees C) and alkaline (pH 11) stabilities, amount of enzyme immobilized on gels for several enzyme loads (8-14 mg(protein)/g(Gel)) and compared to agarose derivatives. Enzyme loads higher than 14 mg(protein)/g(Gel) can be immobilized on glutaraldehyde derivatives, which showed 100% immobilization yield and, for loads up to 8 mg(protein)/g(Gel), 100% recovered activity. Activation with glycidol led to lower immobilization yields than the ones obtained with glutaraldehyde, 61% for agarose-glyoxyl (AgGly) with low grade of activation and 16% for the chitosan-glyoxyl (ChGly), but allowed obtaining the most stable derivative (ChGly), that was 660-fold more stable than the soluble enzyme at 55 and 70 degrees C-approximately threefold more stable than AgGly. The ChGly derivative presented also the highest stability during incubation at pH 11. Analyses of lysine residue contents in soluble and immobilized trypsin indicated formation of multipoint bonds between enzyme and support, for glyoxyl derivatives.  相似文献   

4.
In this study raw starch digesting amylase (RSDA) from Aspergillus carbonarius (Bainier) Thom IMI 366159 was stabilized by covalent binding on polyglutaraldehyde (PG), glutaraldehyde (G) activated chitosan beads or post immobilization cross linking of enzyme adsorbed on chitosan. Presence of Ca2+ ions (0.5–1.5 mM) activated the PG and G derivatives but repressed the crosslinked enzyme. Optimum pH for cross linked derivative increased by 2 units but was unaltered for PG and G derivatives. Immobilized amylase exhibited improved thermal and storage stability. Immobilized derivatives had no loss of activity after 1 month storage and retained above 90% activity after 10 batch reactions of 60 min each. Immobilization successfully stabilized RSDA and immobilized enzyme from A. carbonarius can be applied in numerous industries for cheap, cost effective and environmentally friendly starch hydrolytic processes to simple sugars.  相似文献   

5.
This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40°C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The Km values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower Vmax as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.  相似文献   

6.
《Process Biochemistry》2010,45(8):1422-1426
The starch hydrolyzing enzyme amyloglucosidase (AMG) from Rhizopus was immobilized onto the protonated salt (TS) and basic (TB) forms of chemically synthesized poly(o-toluidine) (POT) using adsorption and covalent binding. The polymers were activated with glutaraldehyde prior to covalent bonding. The immobilization efficiency was affected by the pH of the immobilization medium, contact time and amount of enzyme. After immobilization, the pH and temperature were changed to conditions under which the enzyme is most active. Immobilized AMG was more stable with respect to changes in pH and increases in temperature compared to free AMG. The immobilized enzyme retained high catalytic activity after multiple uses and showed enhanced stability with storage compared to free enzyme.  相似文献   

7.
Silanized palygorskite for lipase immobilization   总被引:2,自引:0,他引:2  
Lipase from Candida lipolytica has been immobilized on 3-aminopropyltriethoxysilane-modified palygorskite support. Scanning electron micrographs proved the covalently immobilization of C. lipolytica lipase on the palygorskite support through glutaraldehyde. Using an optimized immobilization protocol, a high activity of 3300 U/g immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH of the immobilized lipase was at pH 7.0–8.0, while the optimum pH of free lipase was at 7.0. The retained activity of the immobilized enzyme was improved both at lower and higher pH in comparison to the free enzyme. The immobilized enzyme retained more than 70% activity at 40 °C, while the free enzyme retained only 30% activity. The immobilization stabilized the enzyme with 81% retention of activity after 10 weeks at 30 °C whereas most of the free enzyme was inactive after a week. The immobilized enzyme retains high activity after eight cycles. The kinetic constants of the immobilized and free lipase were also determined. The Km and Vmax values of immobilized lipase were 0.0117 mg/ml and 4.51 μmol/(mg min), respectively.  相似文献   

8.
Papain and lipase were immobilized on derivatized Sepharose 4-B. The activated agarose had a binding capacity of 1.2 micronmol amino groups/ml packed agarose or 17 mg proteins/g dry agarose. The immobilized enzyme preparations were tested for the effects of pH of assay, temperature of assay, and substrate concentrations. The effect of 6M urea on the activity of papain was also determined. Soluble forms of the enzymes were used for comparison. Immobilization of the enzymes resulted in slightly different pH and temperature optima for activities. For immobilized papain Km(app) was similar to the one observed with soluble papain. Immobilization of lipase, however, cause a decrease in Km values. The immobilized enzyme preparations were stable when stored at 4 degrees C and pH 7.5 for periods up to eight months. The soluble enzymes lost their activity within 96 hr under similar storage conditions. Immobilized papain did not lose any activity after treatment with 6M urea for 270 min, whereas soluble papain lost 81% of its activity after the urea treatment, indicating that the immobilization of papain imparted structural and conformational stability to this enzyme.  相似文献   

9.
Optimal conditions with respect to pH, concentration of glutaraldehyde and enzyme, and order of addition of enzyme and crosslinking reagent were established for the immobilization of hog kidney D-amino acid oxidase to an attapulgite support. Yields of 40 to 70% were generally attained although when low concentrations of enzyme were used yields were consistently greater than 100%. It is suggested that this is due to a dimer leads to monomer shift at low protein concentrations. The stability of soluble D-amino acid oxidase was dependent on the buffer in which it was stored (pyrophosphate-phosphate greater than borate greater than Tris). Stability of immobilized enzyme was less than soluble in pyrophosphate-phosphate buffer, but storage in the presence of FAD improved stability. In addition, treatment of stored, immobilized enzyme with FAD before assay restored some of its activity. The immobilized D-amino acid oxidase was less stable to heat (50 degrees C) than the soluble enzyme from pH 6 to 8 but was more stable above and below these values. Apparent Km values for D-alanine, D-valine, and D-tryptophan decreased for the immobilized enzyme compared to the soluble.  相似文献   

10.
Calcium alginate–starch hybrid gel was employed as an enzyme carrier both for surface immobilization and entrapment of bitter gourd peroxidase. Entrapped crosslinked concanavalin A–bitter gourd peroxidase retained 52% of the initial activity while surface immobilized and glutaraldehyde crosslinked enzyme showed 63% activity. A comparative stability of both forms of immobilized bitter gourd peroxidase was investigated against pH, temperature and chaotropic agent; like urea, heavy metals, water-miscible organic solvents, detergent and inhibitors. Entrapped peroxidase was significantly more stable as compared to surface immobilized form of enzyme. The pH and temperature-optima for both immobilized preparations were the same as for soluble bitter gourd peroxidase. Entrapped crosslinked concanavalin A–bitter gourd peroxidase showed 75% of the initial activity while the surface immobilized and crosslinked bitter gourd peroxidase retained 69% of the original activity after its seventh repeated use.  相似文献   

11.
无花果蛋白酶通过8%戊二醛活化载体,共价结合到聚苯乙烯阴离子交换树脂GM201上,固定化作用在pH7.7,酶浓度0.8mg/g树脂,4℃下进行6h。得到的固定化酶表观K_m值(酪蛋白,1.11×10~(-4)mol/L)小于溶液酶K_m值(1.96×10~(-4)mol/L);固定化酶活性在pH6~8保持稳定,溶液酶最适pH为7.2;固定化酶最适温度由溶液酶的50~60℃移至37℃;固定化酶25℃保持7d,重复水解酪蛋白7次后,保留83.3%活性。固定化酶对酪蛋白水解度达47.5%,对大豆球蛋白达11.6%。  相似文献   

12.
Cellulase extracted from seeds of Cowpea (Vigna sinensis L var VITA-4) was partially purified and immobilized on brick dust as solid support via glutaraldehyde. The percentage retention of the enzyme activity on brick dust was nearly 85%. After immobilization specific activity of the enzyme increased from 0.275 to 0.557 U mg?1 protein with about 2 fold enrichment. The optimum pH and temperature of soluble enzyme were determined as pH 4.6 and WC, respectively whereas immobilized enzyme showed at pH 5.0 and 37°C, respectively. The Vmax values for soluble and immobilized enzyme were determined as 6.67 and 1.25 mg min?1, respectively whereas Km values were 4.35 and 4.76 mg ml?1, respectively. The immobilized enzyme displayed higher thermal stability than soluble enzyme and retained about 50% of its initial activity after 12 reuses. Immobilized enzyme was packed in an indigenously designed double walled glass bed reactor for continuous production of reducing sugars.  相似文献   

13.
Hydrolysis of proteins by immobilized-stabilized alcalase-glyoxyl agarose   总被引:1,自引:0,他引:1  
This paper presents stable Alcalase-glyoxyl derivatives, to be used in the controlled hydrolysis of proteins. They were produced by immobilizing-stabilizing Alcalase on cross-linked 10% agarose beads, using low and high activation grades of the support and different immobilization times. The Alcalase glyoxyl derivatives were compared to other agarose derivatives, prepared using glutaraldehyde and CNBr as activation reactants. The performance of derivatives in the hydrolysis of casein was also tested. At pH 8.0 and 50 degrees C, Alcalase derivatives produced with 1 h of immobilization time on agarose activated with glutaraldehyde, CNBr, and low and high glyoxyl groups concentration presented half-lives of ca. 10, 29, 60, and 164 h, respectively. More extensive immobilization monotonically led to higher stabilization. The most stabilized Alcalase-glyoxyl derivative was produced using 96 h of immobilization time and high activation grade of the support. It presented half-life of ca. 23 h, at pH 8.0 and 63 degrees C and was ca. 500-fold more stable than the soluble enzyme. Thermal inactivation of all derivatives followed a single-step non-first-order kinetics. The most stable derivative presented ca. 54% of the activity of the soluble enzyme for the hydrolysis of casein and of the small substrate Boc-Ala-ONp. This behavior suggests that the decrease in activity was due to enzyme distortion but not to wrong orientation. The hydrolysis degree of casein at 80 degrees C with the most stabilized enzyme was 2-fold higher than that achieved using soluble enzyme, as a result of the thermal inactivation of the latter. Therefore, the high stability of the new Alcalase-glyoxyl derivative allows the design of continuous processes to hydrolyze proteins at temperatures that avoid microbial growth.  相似文献   

14.
Purified α-amylase from a soil bacterium Bacillus sp. SKB4 was immobilized on coconut coir, an inexpensive cellulosic fiber, with the cross-linking agent glutaraldehyde. The catalytic properties and stability of the immobilized enzyme were compared with those of its soluble form. The enzyme retained 97.2% of its activity and its catalytic properties were not drastically altered after immobilization. The pH optimum and stability of the immobilized enzyme were shifted towards the alkaline range compared to the free enzyme. The optimum temperature for enzymatic activity was 90°C in both forms of the enzyme. The soluble and immobilized enzyme retained 19% and 70% of original activity, respectively, after pre-incubation for 1 h at 90°C. Immobilized amylase was less susceptible to attack by heavy metal ions and showed higher Km and Vmax values than its free form. The bound enzyme showed significant activity and stability after 6 months of storage at 4°C. All of these characteristics make the new carrier system suitable for use in the bioprocess and food industries.  相似文献   

15.
游离酶经过固定化后,稳定性和环境耐受性得到提高,在食品、医药、化工、环境和皮革等领域可以很好的提高酶的利用率并降低生产成本,具有极大的应用潜力。新型交联剂在固定化酶工艺的应用极大推进了固定化酶研究的深入。借助新型交联剂聚乙二醇二缩水甘油醚(PEGDGE),利用氨基载体LX-1000HA固定化海洋假丝酵母脂肪酶,结合单因素和正交试验优化得到交联及固定化条件为:交联温度30℃,交联2h,交联剂浓度0.75%,pH7.0,加酶量800U,载体量0.5g,固定化2h,固定化温度45℃。根据上述最佳固定化工艺,制备得到固定化酶LX-1000HA-PEGDGE-CRL在最适条件下测得酶活达到160.81U/g,约为此前制备的固定化酶LX-1000HA-GA-CRL(由LX-1000HA和戊二醛交联脂肪酶得到)和LX-1000EA-PEGDGE-CRL(由短链氨基载体LX-1000EA和PEGDGE交联脂肪酶得到)酶活的2倍,发现固定化酶LX-1000HA-PEGDGE-CRL的最适反应温度相比于游离酶提高15℃;在70℃的环境中3h后酶活仍存留70%;循环使用6次后残留65%左右的酶活;酸碱耐受性和储存稳定性也表现良好,4℃保存30天后剩余约70%的初始酶活。同时,将制备的固定化酶LX-1000HA-PEGDGE-CRL与游离酶、固定化酶LX-1000HA-GA-CRL、固定化酶LX-1000EA-PEGDGE-CRL进行了比较,发现固定化酶LX-1000HA-PEGDGE-CRL在温度耐受性和重复使用性等方面具有更好的使用效果。  相似文献   

16.
Thermophilic catechol 2,3-dioxygenase (EC 1.13.11.2) from Bacillus stearothermophilus has been immobilized on highly activated glyoxyl agarose beads. The enzyme could be fully immobilized at 4 degrees C and pH 10.05 with a high retention of activity (around 80%). Enzyme immobilized under these conditions showed little increase in thermostability compared with the soluble enzyme, but further incubation of immobilized enzyme at 25 degrees C and pH 10.05 for 3 h before borohydride reduction resulted in conjugates exhibiting a 100-fold increase in stability (c.f. the free enzyme). The stability of catechol 2,3-dioxygenase immobilized under these conditions was essentially independent of protein concentration whereas free enzyme was rapidly inactivated at low protein concentrations. An apparent stabilization factor of over 700-fold was recorded in the comparison of free and immobilized catechol 2,3-dioxygenases at protein concentrations of 10 μg/ml. Immobilization increased the 'optimum temperature' for activity by 20 degrees C, retained activity at substrate concentrations where the soluble enzyme was fully inactivated and enhanced the resistance to inactivation during catalysis. These results suggest that the immobilization of the enzyme under controlled conditions with the generation of multiple covalent links between the enzyme and matrix both stabilized the quaternary structure of the protein and increased the rigidity of the subunit structures.  相似文献   

17.
选择6种吸附树脂和离子交换树脂对D-泛解酸内酯水解酶进行固定化,筛选出了固定化效果较好的大孔弱碱性丙烯酸系阴离子交换树脂D-380为载体,用先吸附后交联的方法固定化。通过实验对固定化条件进行了优化,得出最佳的固定化条件为:加酶量6U/g树脂、吸附pH7.5、吸附时间4h、吸附温度30℃、交联剂戊二醛终浓度0.1%、交联时间2h。实验表明在此条件下制得的固定化酶有很好的稳定性:固定化酶在连续20次的底物水解反应后,剩余酶活达到71%。当温度达到80℃时游离酶几乎失去酶活,而固定化酶剩余酶活为60%以上。游离酶的pH稳定性范围为pH7~8,而固定化酶为pH6.5~8.5。  相似文献   

18.
Li T  Wang N  Li S  Zhao Q  Guo M  Zhang C 《Biotechnology letters》2007,29(9):1413-1416
Pectinase was immobilized on a sodium alginate support using glutaraldehyde and retained 66% activity. The optimal pH for activity shifted from 3.0 to 3.5 after immobilization; however, the optimum temperature remained unchanged at 40°C. The immobilized enzyme also had a higher thermal stability and reusability than the free enzyme, and retained 80% of initial activity after 11 batch reactions.  相似文献   

19.
The direct immobilization of soluble peroxidase isolated and partially purified from shoots of rice seedlings in calcium alginate beads and in calcium agarose gel was carried out. Peroxidase was assayed for guaiacol oxidation products in presence of hydrogen peroxide. The maximum specific activity and immobilization yield of the calcium agarose immobilized peroxidase reached 2,200 U mg−1 protein (540 mU cm−3 gel) and 82%, respectively. In calcium alginate the maximum activity of peroxidase upon immobilization was 210 mU g−1 bead with 46% yield. The optimal pH for agarose immobilized peroxidase was 7.0 which differed from the pH 6.0 for soluble peroxidase. The optimum temperature for the agarose immobilized peroxidase however was 30°C, which was similar to that of soluble peroxidase. The thermal stability of calcium agarose immobilized peroxidase significantly enhanced over a temperature range of 30∼60°C upon immobilization. The operational stability of peroxidase was examined with repeated hydrogen peroxide oxidation at varying time intervals. Based on 50% conversion of hydrogen peroxide and four times reuse of immobilized gel, the specific degradation of guaiacol for the agarose immobilized peroxidase increased three folds compared to that of soluble peroxidase. Nearly 165% increase in the enzyme protein binding to agarose in presence of calcium was noted. The results suggest that the presence of calcium, ions help in the immobilization process of peroxidase from rice shoots and mediates the direct binding of the enzyme to the agarose gel and that agarose seems to be a better immobilization matrix for peroxidase compared to sodium alginate.  相似文献   

20.
The main objective of the present work is to study the immobilization process of Aspergillus oryzae β-galactosidase using the ionic exchange resin Duolite A568 as carrier. Initially, the immobilization process by ionic binding was studied through a central composite design (CCD), by analyzing the simultaneous influences of the enzyme concentration and pH on the immobilization medium. The results indicate that the retention of enzymatic activity during the immobilization process was strongly dependant of those variables, being maximized at pH 4.5 and enzyme concentration of 16 g/L. The immobilized enzyme obtained under the previous conditions was subjected to a cross-linking process with glutaraldehyde and the conditions that maximized the activity were a glutaraldehyde concentration of 3.83 g/L and cross-linking time of 1.87 h. The residual activity of the immobilized enzyme without glutaraldehyde cross-linking was 51% of the initial activity after 30 uses, while the enzyme with cross-linking immobilization was retained 90% of its initial activity. The simultaneous influence of pH and temperature on the immobilized β-galactosidase activity was also studied through a central composite design (CCD). The results indicate a greater stability on pH variations when using the cross-linking process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号