首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Derepressed mutant PR-22 was obtained by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) mutagenic treatment of Cellulomonas flavigena PN-120. This mutant improved its xylanolytic activity from 26.9 to 40 U mg−1 and cellulolytic activity from 1.9 to 4 U mg−1; this represented rates almost 2 and 1.5 times higher, respectively, compared to its parent strain growing in sugarcane bagasse. Either glucose or cellobiose was added to cultures of C. flavigena PN-120 and mutant PR-22 induced with sugarcane bagasse in batch culture. The inhibitory effect of glucose on xylanase activity was more noticeable for parent strain PN-120 than for mutant PR-22. When 20 mM glucose was added, the xylanolytic activity decreased 41% compared to the culture grown without glucose in mutant PR-22, whereas in the PN-120 strain the xylanolytic activity decreased by 49% at the same conditions compared to its own control. Addition of 10 and 15 mM of glucose did not adversely affect CMCase activity in PR-22, but glucose at 20 mM inhibited the enzymatic activity by 28%. The CMCase activity of the PN-120 strain was more sensitive to glucose than PR-22, with a reduction of CMCase activity in the range of 20–32%. Cellobiose had a more significant effect on xylanase and CMCase activities than glucose did in the mutant PR-22 and parent strain. Nevertheless, the activities under both conditions were always higher in the mutant PR-22 than in the PN-120 strain. Enzymatic saccharification experiments showed that it is possible to accumulate up to 10 g l−1 of total soluble sugars from pretreated sugarcane bagasse with the concentrated enzymatic crude extract from mutant PR-22.  相似文献   

2.
In recent years, the biotechnological use of xylanases has grown remarkably. To efficiently produce xylanase for food processing and other industry, a codon-optimized recombinant xylanase gene from Streptomyces sp. S38 was synthesized and extracellularly expressed in Pichia pastoris under the control of AOX1 promoter. SDS-PAGE and activity assay demonstrated that the molecular mass of the recombinant xylanase was estimated to be 25 kDa, the optimum pH and optimum temperature were 5.5 and 50°C, respectively. In shake flask culture, the specific activity of the xylanase activity was 5098.28 U/mg. The K m and V max values of recombinant xylanase were 11.0 mg/ml and 10000 μmol min−1 mg−1, respectively. In the presence of metal ions such as Ca2+, Cu2+, Cr3+ and K+, the activity of the enzyme increased. However, strong inhibition of the enzyme activity was observed in the presence of Hg2+. This is the first report on the expression properties of a recombinant xylanase gene from the Streptomyces sp. S38 using Pichia pastoris. The attractive biochemical properties of the recombinant xylanase suggest that it may be a useful candidate for variety of commercial applications.  相似文献   

3.
The strain of Trichoderma reesei Rut C-30 was subjected to mutation after treatment with N-methyl-N′-nitro-N-nitrosoguanidine (NG) for 6 h followed by UV irradiation for 15 min. Successive mutants showed enhanced cellulase production, clear hydrolysis zone and rapid growth on Avicel-containing plate. Particularly, the mutant NU-6 showed approximately two-fold increases in activity of both FPA and CMCase in shake flask culture when grown on basal medium containing peptone (1%) and wheat bran (1%). The enzyme production was further optimized using eight different media. When a mixture of lactose and yeast cream was used as cellulase inducer, the mutant NU-6 yielded the highest enzyme and cell production with a FPase activity of 6.2 U ml−1, a CMCase activity of 54.2 U ml−1, a β-glucosidase activity of 0.39 U ml−1, and a fungal biomass of 12.6 mg ml−1. It deserved noting that the mutant NU-6 also secreted large amounts of xylanases (291.3 U ml−1). These results suggested that NU-6 should be an attractive producer for both cellulose and xylanase production.  相似文献   

4.
A metagenomic library containing ca. 3.06 × 108 bp insert DNA was constructed from a rice straw degrading enrichment culture. A xylanase gene, umxyn10A, was cloned by screening the library for xylanase activity. The encoded enzyme Umxyn10A showed 58% identity and 73% similarity with a xylanase from Thermobifida fusca YX. Sequence analyses showed that Umxyn10A contained a glycosyl hydrolase family 10 catalytic domain. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified and characterized biochemically. Recombinant Umxyn10A was highly active toward xylan. However, the purified enzyme could slightly hydrolyze β-1,3/4-glucan and β-1,3/6-glucan. Umxyn10A displayed maximal activity toward oat spelt xylan at a high temperature (75°C) and weak acidity (pH 6.5). The K m and V max of Umxyn10A toward oat spelt xylan were 3.2 mg ml−1 and 0.22 mmol min−1 mg−1 and were 2.7 mg ml−1 and 1.0 mmol min−1 mg−1 against birchwood xylan, respectively. Metal ions did not appear to be required for the catalytic activity of this enzyme. The enzyme Umxyn10A could efficiently hydrolyze birchwood xylan to release xylobiose as the major product and a negligible amount of xylose. The xylanase identified in this work may have potential application in producing xylobiose from xylan.  相似文献   

5.
A cellulase-free xylanase production by Thermomyces lanuginosus SSBP using bagasse pulp was examined under submerged (SmC) and solid-state cultivation (SSC). Higher level of xylanase activity (19,320 ± 37 U g−1 dried carbon source) was obtained in SSC cultures than in SmC (1,772 ± 15 U g−1 dried carbon source) after 120 h with 10% inoculum. The biobleaching efficacy of crude xylanase was tested on bagasse pulp, and the maximum brightness of 46.1 ± 0.06% was observed with 50 U of crude xylanase per gram of pulp, which was 3.8 points higher than the brightness of untreated samples. Reducing sugars (26 ± 0.1 mg g−1) and UV-absorbing lignin-derived compounds in the pulp filtrates were observed as maximum in 50 U of crude xylanase-treated samples. T. lanuginosus SSBP has potential applications due to its high productivity of xylanase and its efficiency in pulp bleaching.  相似文献   

6.
A xylanase gene xyn10A was isolated from the human gut bacterium Bacteroides xylanisolvens XB1A and the gene product was characterized. Xyn10A is a 40-kDa xylanase composed of a glycoside hydrolase family 10 catalytic domain with a signal peptide. A recombinant His-tagged Xyn10A was produced in Escherichia coli and purified. It was active on oat spelt and birchwood xylans and on wheat arabinoxylans. It cleaved xylotetraose, xylopentaose, and xylohexaose but not xylobiose, clearly indicating that Xyn10A is a xylanase. Surprisingly, it showed a low activity against carboxymethylcellulose but no activity at all against aryl-cellobioside and cellooligosaccharides. The enzyme exhibited K m and V max of 1.6 mg ml−1 and 118 μmol min−1 mg−1 on oat spelt xylan, and its optimal temperature and pH for activity were 37°C and pH 6.0, respectively. Its catalytic properties (k cat/K m = 3,300 ml mg−1 min−1) suggested that Xyn10A is one of the most active GH10 xylanase described to date. Phylogenetic analyses showed that Xyn10A was closely related to other GH10 xylanases from human Bacteroides. The xyn10A gene was expressed in B. xylanisolvens XB1A cultured with glucose, xylose or xylans, and the protein was associated with the cells. Xyn10A is the first family 10 xylanase characterized from B. xylanisolvens XB1A.  相似文献   

7.
Summary Thermomyces lanuginosus CAU44, a newly isolated thermophilic fungus strain, was used for the production of extracellular xylanase on various lignocellulosic materials under shake flask conditions. High-level production of xylanase by the strain was enhanced by optimizing the type of carbon sources, substrate concentration, particle size and surfactants in the culture medium. The titre of xylanase activity obtained of up to 4156 U ml−1 was the highest ever reported.  相似文献   

8.
We studied heterologous expression of xylanase 11A gene of Chaetomium thermophilum in Pichia pastoris and characterized the thermostable nature of the purified gene product. For this purpose, the xylanase 11A gene of C. thermophilum was cloned in P. pastoris GS115 under the control of AOX1 promoter. The maximum extracellular activity of recombinant xylanase (xyn698: gene with intron) was 15.6 U ml−1 while that of recombinant without intron (xyn669) was 1.26 U ml−1 after 96 h growth. The gene product was purified apparently to homogeneity level. The optimum temperature of pure recombinant xylanase activity was 70°C and the enzyme retained its 40.57% activity after incubation at 80°C for 10 min. It exhibited quite lower demand of activation energy, enthalpy, Gibbs free energy, entropy, and xylan binding energy during substrate hydrolysis than that required by that of the donor, thus indicating its thermostable nature. pH-dependent catalysis showed that it was quite stable in a pH range of 5.5–8.5. This revealed that gene was successfully processed in Ppastoris and remained heat stable and may qualify for its potential use in paper and pulp and animal feed applications.  相似文献   

9.
The objective of this study was to use statistically based experimental designs for the optimization of xylanase production from Alternaria mali ND-16. Ten components in the medium were screened for nutritional requirements. Three nutritional components, including NH4Cl, urea, and MgSO4, were identified to significantly affect the xylanase production by using the Plackett–Burman experimental design. These three major components were subsequently optimized using the Doehlert experimental design. By using response surface methodology and canonical analysis, the optimal concentrations for xylanase production were: NH4Cl 11.34 g L−1, urea 1.26 g L−1, and MgSO4 0.98 g L−1. Under these optimal conditions, the xylanase activity from A. mali ND-16 reached 30.35 U mL−1. Verification of the optimization showed that xylanase production of 31.26 U mL−1 was achieved.  相似文献   

10.
Summary Deoxyglucose-resistant mutants of Cellulomonas biazotea secreted elevated levels of cellulases and xylanases. The production of β-glucosidase in the constitutive mutant was increased 5-fold over its parent strain. This mutant showed an approximately 1.6-fold enhanced productivity of extracellular endo-glucanase following growth on Leptochloa fusca over the mutant parent. Extracellular production of xylanase, filter-paper cellulase (FPase) and endo-glucanase (CMCase) were also altered in the mutant. Maximum volumetric productivities for xylanase, β-xylosidase, FPase, β-glucosidase and endo-glucosidase were 451, 98, 80, 95, and 143 IU l−1 h−1 which were significantly more than their respective values from the parental strains. The enzyme preparation of the mutants exhibited improved saccharification of kallar grass straw.  相似文献   

11.
Cui  Fengjie  Li  Yin  Liu  Zhiqiang  Zhao  Hui  Ping  Lifeng  Ping  Liying  Yang  Yinan  Xue  Yaping  Yan  Lijiao 《World journal of microbiology & biotechnology》2009,25(4):721-725
The objective of this study was to maximize production of xylanase by a newly isolated strain Penicillium thiersii ZH-19. Response surface methodology was employed to study the effects of significant factors such as pH, temperature, xylan concentration, and cultivation time, on the production of xylanase by Penicillium thiersii ZH-19. The optimal fermentation parameters for enhanced xylanase production were found to be pH 7.72, temperature 24.8°C, xylan 13.2 g l−1 and the fermentation time 125.8 h. The model predicted a xylanase activity of 75.24 U ml−1. Verification of the optimization showed that the maximum xylanase production reached 73.50 U mL−1 in the flask experiments and 80.23 U mL−1 in the scale of 15-L fermenter under the optimal condition.  相似文献   

12.
Xylanases produced from a locally isolated strain of Thermomyces lanuginosus and its mutant derivative were purified to a yield of 39.1 and 42.83% with specific activities of 15,501 and 17,778 IU mg−1 protein, respectively. The purification consisted of two steps i.e., ammonium sulphate precipitation, and gel filtration chromatography. The mutant enzyme showed high affinity for substrate, with a K m of 0.098 mg ml−1 as compared to wild type enzyme showing K m of not less than 0.112 mg ml−1. It was found that pH values of 8.1 and 7.3 were best for activity of the mutant and wild-type-derived enzymes, respectively. The values of pK a of the acidic limbs of both enzymes were the same (5.0 and 4.9, respectively) but the pK a value of the basic limb was slightly increased, indicating the participation of a carboxyl group present in a non-polar environment. Temperatures of 70 and 65°C were found optimal for mutant and wild-derived xylanase, respectively. Enzymes displayed a high thermostability showing a half life of 31.79 and 6.0 min (5.3-fold improvement), enthalpy of denaturation (ΔH*) of 146.06 and 166.95 kJ mol−1, entropy of denaturation (ΔS*) of 101.44 and 174.67, and free energy of denaturation (ΔG*) of 110.25 and 105.29 kJ mol−1 for mutant- and wild-organism derived enzyme, respectively at 80°C. Studies on the folding and stability of cellulase-less xylanases are important, since their biotechnological employments require them to function under extreme conditions of pH and temperature. The kinetic and thermodynamic properties suggested that the xylanase from the mutant organism is better as compared to xylanase produced from the wild type and previously reported strains of same species, and may have a potential usage in various industrial fields.  相似文献   

13.
We cloned and sequenced a xylanase gene named xylD from the acidophilic fungus Bispora sp. MEY-1 and expressed the gene in Pichia pastoris. The 1,422-bp full-length complementary DNA fragment encoded a 457-amino acid xylanase with a calculated molecular mass of 49.8 kDa. The mature protein of XYLD showed high sequence similarity to both glycosyl hydrolase (GH) families 5 and 30 but was more homologous to members of GH 30 based on phylogenetic analysis. XYLD shared the highest identity (49.9%) with a putative endo-1,6-β-d-glucanase from Talaromyces stipitatus and exhibited 21.1% identity and 34.3% similarity to the well-characterized GH family 5 xylanase from Erwinia chrysanthemi. Purified recombinant XYLD showed maximal activity at pH 3.0 and 60 °C, maintained more than 60% of maximal activity when assayed at pH 1.5–4.0, and had good thermal stability at 60 °C and remained stable at pH 1.0–6.0. The enzyme activity was enhanced in the presence of Ni2+ and β-mercaptoethanol and inhibited by some metal irons (Hg2+, Cu2+, Pb2+, Mn2+, Li+, and Fe3+) and sodium dodecyl sulfate. The specific activity of XYLD for beechwood xylan, birchwood xylan, 4-O-methyl-d-glucuronoxylan, and oat spelt xylan was 2,463, 2,144, 2,020, and 1,429 U mg−1, respectively. The apparent K m and V max values for beechwood xylan were 5.6 mg ml−1 and 3,622 μmol min−1 mg−1, respectively. The hydrolysis products of different xylans were mainly xylose and xylobiose.  相似文献   

14.
An acetate negative mutant of Yarrowia lipolytica Wratislavia AWG7 was found to be suitable for the production of high amounts of citric acid in long-term repeated-batch cultures. When 40% of fresh replaced medium was fed, this strain produced 154 g l−1, on average, which corresponded to a 0.78 g g−1 yield and a productivity of 1.05 g l−1 h−1. The activity of the culture remained stable for more than 1,650 h, i.e., 16 cycles of the repeated-batch bioreactors.  相似文献   

15.
The endo-β-1, 4-xylanase gene xynA from Aspergillus sulphureus, encoded a lack-of-signal peptide protein of 184 amino acids, was de novo synthesized by splicing overlap extension polymerase chain reaction according to Pichia pastoris protein’s codon bias. The synthetic DNA, composed of 572 nucleotides, was ligated into the downstream sequence of an α-mating factor in a constitutive expression vector pGAPzαA and electrotransformed into the P. pastoris X-33 strain. The transformed yeast screened by Zeocin was able to constitutively secrete the xylanase in yeast–peptone–dextrose liquid medium. The heterogenous DNA was stabilized in the strain by 20-times passage culture. The recombinant enzyme was expressed with a yield of 120 units/mL under the flask culture at 28°C for 3 days. The enzyme showed optimal activity at 50°C and pH 2.4–3.4. Residual activity of the raw recombinant xylanase was not less than 70% when fermentation broth was directly heated at 80°C for 30 min. However, the dialyzed xylanase supernatant completely lost the catalytic activity after being heated at 60°C for 30 min. The recombinant xylanase showed no obvious activity alteration by being pretreated with Na2HPO4-citric acid buffer of pH 2.4 for 2 h. The xylanase also showed resistance to certain metal ions (Na+, Mg2+, Ca2+, K+, Ba2+, Zn2+, Fe2+, and Mn2+) and EDTA. These biochemical characteristics suggest that the recombinant xylanase has a prospective application in feed industry as an additive.  相似文献   

16.
Fungi producing high xylanase levels have attracted considerable attention because of their potential industrial applications. Batch cultivations of Aspergillus terricola fungus were evaluated in stirred tank and airlift bioreactors, by using wheat bran particles suspended in the cultivation medium as substrate for xylanase and β-xylosidase production. In the stirred tank bioreactor, in physical conditions of 30°C, 300 rpm, and aeration of 1 vvm (1 l min−1), with direct inoculation of fungal spores, 7,475 U l−1 xylanase was obtained after 36 h of operation, remaining constant after 24 h. In the absence of air injection in the stirred tank reactor, limited xylanase production was observed (final concentration 740 U l−1). When the fermentation process was realized in the airlift bioreactor, xylanase production was higher than that observed in the stirred tank bioreactor, being 9,265 U l−1 at 0.07 vvm (0.4 l min−1) and 12,845 U l−1 at 0.17 vvm (1 l min−1) aeration rate.  相似文献   

17.
18.
Using degenerate polymerase chain reaction (PCR) and thermal asymmetric interlaced PCR, a 1,347-bp full-length complementary DNA fragment encompassing the gene man5A, which encodes a 429-amino acid β-mannanase with a calculated mass of 46.8 kDa, was cloned from acidophilic Bispora sp. MEY-1. The deduced amino acid sequence (catalytic domain) displayed highest identity (54.1%) with the Emericella nidulans endo-β-1,4-d-mannanase, a member of the glycoside hydrolase family 5. Recombinant MAN5A was overexpressed in Pichia pastoris, and its activity in the culture medium reached 500 U ml−1. The enzyme was acidophilic, with highest activity at pH 1.0–1.5, lower than any known mannanases, and optimal temperature for activity was 65°C. MAN5A had good pH adaptability, excellent thermal and pH stability, and high resistance to both pepsin and trypsin. The specific activity, K m, and V max for locust bean gum substrate was 3,373 U mg−1, 1.56 mg ml−1, and 6,587.6 μmol min−1 mg−1, respectively. The enzymatic activity was not significantly affected by ions such as Ca2+, Cr3+, Co2+, Zn2+, Na+, K+, and Mg2+ and enhanced by Ni2+, Fe3+, Mn2+ and Ag+. These favorable properties make MAN5A a potential candidate for use in various industrial applications.  相似文献   

19.
Xylanase production by the Antarctic psychrophilic yeast Cryptococcus adeliae was increased 4.3 fold by optimizing the culture medium composition using statistical designs. The optimized medium containing 24.2 g l−1 xylan and 10.2 g l−1 yeast extract and having an initial pH of 7.5 yielded xylanase activity at 400 nkat (nanokatal) ml−1 after 168-h shake culture at 4°C. In addition, very little endoglucanase, β-mannanase, β-xylosidase, β-glucosidase, α-l-arabinofuranosidase, and no filter paper cellulase activities were detected. Among 12 carbon sources tested, maximum xylanase activity was induced by xylan, followed by lignocelluloses such as steamed wheat straw and alkali-treated bagasse. The level of enzyme activity produced on other carbon sources appeared to be constitutive. Among the complex organic nitrogen sources tested, the xylanase activity was most enhanced by yeast extract, followed by soymeal, Pharmamedia (cotton seed protein), and Alburex (potato protein). A batch culture at 10°C in a 5-l fermenter (3.5-1 working volume) using the optimized medium gave 385 nkat at 111 h of cultivation. The crude xylanase showed optimal activity at pH 5.0–5.5 and good stability at pH 4–9 (21 h at 4°C). Although the enzyme was maximally active at 45°–50°C, it appeared very thermolabile, showing a half-life of 78 min at 35°C. At 40°–50°C, it lost 71%–95% activity within 5 min. This is the first report on the production as well as on the properties of thermolabile xylanase produced by an Antarctic yeast. Received: December 10, 1999 / Accepted: March 23, 2000  相似文献   

20.
The effect of cell density on xylanolytic activity and productivity of Cellulomonas flavigena was evaluated under two different culturing conditions: fed-batch culture with discontinuous feed of sugar cane bagasse (SCB; condition 1) and glycerol fed-batch culture followed by addition of SBC as xylanases inducer (condition 2). The enzymatic profile of xylanases was similar in both systems, regardless of the initial cell density at time of induction. However, the xylanolytic activity changed with initial cell density at the time of induction (condition 2). The maximum volumetric xylanase activity increased with increased initial cell density from 4 to 34 g l−1 but decreased above this value. The largest total volumetric xylanase productivity under condition 2 (1.3 IU ml−1 h−1) was significantly greater compared to condition 1 (maximum 0.6 IU ml−1 h−1). Consequently, induction of xylanase activity by SCB after growing of C. flavigena on glycerol at intermediate cell density can be a feasible alternative to improve activity and productivity of xylanolytic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号