首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap junctions are direct intercellular channels that permit the passage of ions and small signaling molecules. The temporal and spatial regulation of gap junctional communication is, thus, one mechanism by which cell interactions, and hence cell properties and cell fate, may be regulated during development. The nervous system of the leech, Hirudo medicinalis, is a particularly advantageous system in which to study developmental mechanisms involving gap junctions because interactions between identified cells may be studied in vivo in both the embryo and the adult. As in most invertebrates, gap junctions in the leech are composed of innexin proteins, which are distantly related to the vertebrate pannexins and are encoded by a multi-gene family. We have cloned ten novel leech innexins and describe the expression of these, plus two other previously reported members of this gene family, in the leech embryo between embryonic days 6 and 12, a period during which the main features of the central nervous system are established. Four innexins are expressed in neurons and two in glia, while several innexins are expressed in the excretory, circulatory, and reproductive organs. Of particular interest is Hm-inx6, whose expression appears to be restricted to the characterized S cell and two other neurons putatively identified as presynaptic to this cell. Two other innexins also show highly restricted expressions in neurons and may be developmentally regulated. Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

2.
The channel proteins of gap junctions are encoded by two distinct gene families, connexins, which are exclusive to chordates, and innexins/pannexins, which are found throughout the animal kingdom. Although the relationship between the primary structure and function of the vertebrate connexins has been relatively well studied, there are, to our knowledge, no structure-function analyses of invertebrate innexins. In the first such study, we have used tryptophan scanning to probe the first transmembrane domain (M1) of the Drosophila innexin Shaking-B(Lethal), which is a component of rectifying electrical synapses in the Giant Fiber escape neural circuit. Tryptophan was substituted sequentially for 16 amino acids within M1 of Shaking-B(Lethal). Tryptophan insertion at every fourth residue (H27, T31, L35, and S39) disrupted gap junction function. The distribution of these sites is consistent with helical secondary structure and identifies the face of M1 involved in helix-helix interactions. Tryptophan substitution at several sites in M1 altered channel properties in a variety of ways. Changes in sensitivity to transjunctional voltage (Vj) were common and one mutation (S39W) induced sensitivity to transmembrane voltage (Vm). In addition, several mutations induced hemichannel activity. These changes are similar to those observed after substitutions within the transmembrane domains of connexins.  相似文献   

3.
Gap junction channels facilitate the intercellular exchange of ions and small molecules. While this process is critical to all multicellular organisms, the proteins that form gap junction channels are not conserved. Vertebrate gap junctions are formed by connexins, while invertebrate gap junctions are formed by innexins. Interestingly, vertebrates and lower chordates contain innexin homologs, the pannexins, which also form channels, but rarely (if ever) make intercellular channels. While the connexin and the innexin/pannexin polypeptides do not share significant sequence similarity, all three of these protein families share a similar membrane topology and some similarities in quaternary structure. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.  相似文献   

4.
Dahl G  Locovei S 《IUBMB life》2006,58(7):409-419
Vertebrates express two families of gap junction proteins: the well characterized connexins and the recently discovered pannexins. The latter are related to invertebrate innexins. Here we present the hypothesis that pannexins, rather than providing a redundant system to gap junctions formed by connexins, exert a physiological role as nonjunctional membrane channels. Specifically, we propose that pannexins can serve as ATP release channels. This function presumptively is also performed by innexins in invertebrates, in addition to their traditional gap junction role.  相似文献   

5.
In this review, we briefly summarize what is known about the properties of the three families of gap junction proteins, connexins, innexins and pannexins, emphasizing their importance as intercellular channels that provide ionic and metabolic coupling and as non-junctional channels that can function as a paracrine signaling pathway. We discuss that two distinct groups of proteins form gap junctions in deuterostomes (connexins) and protostomes (innexins), and that channels formed of the deuterostome homologues of innexins (pannexins) differ from connexin channels in terms of important structural features and activation properties. These differences indicate that the two families of gap junction proteins serve distinct, complementary functions in deuterostomes. In several tissues, including the CNS, both connexins and pannexins are involved in intercellular communication, but have different roles. Connexins mainly contribute by forming the intercellular gap junction channels, which provide for junctional coupling and define the communication compartments in the CNS. We also provide new data supporting the concept that pannexins form the non-junctional channels that play paracrine roles by releasing ATP and, thus, modulating the range of the intercellular Ca(2+)-wave transmission between astrocytes in culture.  相似文献   

6.
Innexins in C. elegans   总被引:2,自引:0,他引:2  
Innexins are functionally analogous to the vertebrate connexins, and the innexin family of gap junction proteins has been identified in many invertebrates, including Drosophila and C. elegans. The genome sequencing project has identified 25 innexins in C. elegans. We are particularly interested in the roles that gap junctions may play in embryonic development and in wiring of the nervous system. To identify the particular C. elegans innexins that are involved in these processes, we are examining their expression patterns using specific antibodies and translational GFP fusions. In addition we are investigating mutant, RNAi and overexpression phenotypes for many of these genes. To date, we have generated specific antibodies to the non-conserved carboxyl termini of 5 innexins. We have constructed GFP translational fusions for 17 innexins and observed expression patterns for 13 of these genes. In total we have characterized expression patterns representing 14 innexins. Mutations have been identified in 5 of these genes, and at least 3 others have RNAi mutant phenotypes. Generalities emerging from our studies include: 1) most tissues and many individual cells express more than one innexin, 2) some innexins are expressed widely, while others are expressed in only a few cells, and 3) there is a potential for functional pairing of innexins.  相似文献   

7.
Gap junctions formed by two hemichannels from two neighboring cells are cell-to-cell communication channels; hemichannels are communication channels between intracellular and extracellular environments. Hemichannels are hexameric proteins formed by connexins, pannexins, innexins and vinnexins. Innexin-hemichannels (innexons) exist in the lepidopteran cell surface, but their component innexins and functions have not been reported. Recent studies by others have demonstrated that hemichannels, connexons and pannexons from vertebrates serve as regulators of apoptosis via inactivating the PI3K/Akt signaling pathway. Here, the apoptogenic properties of innexons are demonstrated using two innexin cDNAs, Spli-inx2 and Spli-inx3, which were isolated from hemocytes of lepidopteran Spodoptera litura. Alignment analysis revealed that these two genes belong to a conserved innexin family, as they contain the insect signature YYQWV motif at the beginning of the second transmembrane domain. Immunofluorescence showed that two fusion proteins, Inx2-V5 and Inx3-V5, were localized predominantly in the cell membrane, cytoplasm and also nuclei. Ectopic expression in Sf9 cells and over-expression of Inx2 and Inx3 in Spli221 cells promoted apoptosis. In the Spli221 cells, apoptotic cells presented remarkable membrane blebbing. This study also showed that Sf9 and Spli221 cells undergo low level apoptosis under normal culture conditions, but not Hi5 cells. In Hi5 stable cell lines, biotinylation was used to isolate surface proteins and confirm Inx2 and Inx3 localization in the cell membrane and also further data showed that Hi5 cells may activate the PI3K signaling pathway via phosphorylating molecular Akt downstream. This result suggests that innexon-promoted apoptosis may be involving the PI3K/Akt signaling pathway. These findings will facilitate further examinations of the apoptotic regulation by the PI3K/Akt signaling pathway and comparative studies of innexons, connexons, pannexons, and vinnexons.  相似文献   

8.
CALHM1 (calcium homeostasis modulator 1) forms a plasma membrane ion channel that mediates neuronal excitability in response to changes in extracellular Ca2+ concentration. Six human CALHM homologs exist with no homology to other proteins, although CALHM1 is conserved across >20 species. Here we demonstrate that CALHM1 shares functional and quaternary and secondary structural similarities with connexins and evolutionarily distinct innexins and their vertebrate pannexin homologs. A CALHM1 channel is a hexamer, comprised of six monomers, each of which possesses four transmembrane domains, cytoplasmic amino and carboxyl termini, an amino-terminal helix, and conserved extracellular cysteines. The estimated pore diameter of the CALHM1 channel is ∼14 Å, enabling permeation of large charged molecules. Thus, CALHMs, connexins, and pannexins and innexins are structurally related protein families with shared and distinct functional properties.  相似文献   

9.
Neurons and glia of the medicinal leech CNS express different subsets of the 21 innexin genes encoded in its genome. We report here that the punctal distributions of fluorescently tagged innexin transgenes varies in a stereotypical pattern depending on the innexin expressed. Furthermore, whereas certain innexins colocalize extensively (INX1 and INX14), others do not (e.g., INX1 and INX2 or INX6). We then demonstrate that the mutation of a highly conserved proline residue in the second transmembrane domain of innexins creates a gap junction protein with dominant negative properties. Coexpressing the mutated INX1 gene with its wild type blocks the formation of fluorescent puncta and decouples the expressing neuron from its normal gap junction‐coupled network of cells. Similarly, expression of an INX2 mutant transgene (a glial cell innexin), blocks endogenous INX2 puncta and wild‐type transgene puncta, and decouples the glial cell from the other glial cells in the ganglion. We show in cell culture with dye‐uptake and plasma membrane labeling experiments that the mutant innexin transgene is not expressed on the cell membrane but instead appears to accumulate in the cell's perinuclear region. Lastly, we use these mutant innexin transgenes to show that the INX1 mutant transgene blocks not only INX1 puncta formation, but also puncta of INX14, with which INX1 usually colocalizes. By contrast, the formation of INX6 puncta was unaffected by the INX1 mutant. Together, these experiments suggest that leech innexins can selectively interact with one another to form gap junction plaques, which are heterogeneously located in cellular arbors. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 571–586, 2013  相似文献   

10.
A novel member of the innexin family (cv-inx) has been isolated from the annelid polychaete worm Chaetopterus variopedatus using a PCR approach on genomic DNA and sequence analysis on genomic DNA clones. The gene is present in a HindIII-HindIII segment of 2250 bp containing an uninterrupted open reading frame of 1196 bp encoding a protein of 399 amino acids. The predicted protein shows the typical structural features of innexins and consensus sites for phosphorylation. Analyses on genomic DNA demonstrate that cv-inx is a single copy gene with no introns in the coding region, exactly corresponding to the cDNA sequence. The gene expression is regulated during development as shown by Northern blots analyses of the RNA and by immunoreaction with antibodies against the protein at several embryonic stages. The finding of an innexin in the phylum Annelida, outside of the Ecdysozoa clade, and its peculiar gene structure suggest the necessity to reconsider the current hypothesis on the origin and evolution of gap junctional proteins. Received: 15 December 2000 / Accepted: 27 August 2001  相似文献   

11.
Gap junction channels may be comprised of either connexin or pannexin proteins (innexins and pannexins). Membrane topologies of both families are similar, but sequence similarity is lacking. Recently, connexin-like sequences have been identified in mammalian and zebrafish genomes that have only four conserved cysteines in the extracellular domains (Cx23), a feature of the pannexins. Phylogenetic analyses of the non-canonical "C4" connexins reveal that these sequences are indeed connexins. Functional assays reveal that the Cx23 gap junctions are capable of sharing neurobiotin, and further, that Cx23 connexins form hemichannels in vitro.  相似文献   

12.
Innexins form two types of channels   总被引:1,自引:0,他引:1  
Bao L  Samuels S  Locovei S  Macagno ER  Muller KJ  Dahl G 《FEBS letters》2007,581(29):5703-5708
Injury to the central nervous system triggers glial calcium waves in both vertebrates and invertebrates. In vertebrates the pannexin1 ATP-release channel appears to provide for calcium wave initiation and propagation. The innexins, which form invertebrate gap junctions and have sequence similarity with the pannexins, are candidates to form non-junctional membrane channels. Two leech innexins previously demonstrated in glia were expressed in frog oocytes. In addition to making gap junctions, innexins also formed non-junctional membrane channels with properties similar to those of pannexons. In addition, carbenoxolone reversibly blocked the loss of carboxyfluorescein dye into the bath from the giant glial cells in the connectives of the leech nerve cord, which are known to express the innexins we assayed.  相似文献   

13.

Background  

In the Drosophila ovary, germ-line and soma cells are interconnected via gap junctions. The main gap-junction proteins in invertebrates are members of the innexin family. In order to reveal the role that innexins play in cell-cell communication during oogenesis, we investigated the localization of innexins 1, 2, 3 and 4 using immunohistochemistry, and analyzed follicle development following channel blockade.  相似文献   

14.
The presence and distribution of immunoreactivity to the cyclic AMP response element binding protein (CREB) were determined in the central nervous system (CNS) and in peripheral tissues of the medicinal leech Hirudo. Western blots revealed several CREB-immunoreactive (CREB-IR) bands including one whose molecular weight (43–44 kDa) was similar to mammalian CREB. The 43–44 kDa CREB-like protein was detected in nuclear extracts of the ventral nerve cord and was not observed following preincubation of the primary antiserum with the epitope sequence. CREB-like immunoreactivity was detected in extracts from each of six regions of the leech CNS, and in extracts from leech body wall musculature, crop, intestine, jaw musculature, pharynx, and salivary tissues. Whole mounts of leech ganglia revealed specific CREB-IR in a restricted population of neurons distributed throughout the leech CNS. Apparent homologues to a pair of CREB-IR dorsolateral neurons were observed in most ganglia along the ventral nerve cord. Several CREB-IR neurons exhibited segmental specificity. A number of neurons stained with an antiserum to the cyclic AMP response element modulator (CREM). These neurons showed no overlap in location with CREB-IR neurons, and this staining was not eliminated with a preabsorption control. Possible roles for a CREB-like protein in the leech are discussed. Electronic Publication  相似文献   

15.
Conchospore germlings of Porphyra yezoensis were stained with a fluorescent dye for DNA and observed with confocal laser scanning microscopy (CLSM). Relative DNA values of the germling nuclei were obtained by measuring fluorescence intensities of nuclear regions of the optically sliced specimens, using the mean value of the smallest blade cells as a reference of the genomic n value. Such quantification revealed that the nuclear DNA amounts of the one-cell, two-cell, and four-cell-stage germlings are approximately 4 × n, 2 × n, and n ∼2 × n values respectively; these values agreed well with the expected ones from the hypothesis that meiosis corresponds to the first successive cell divisions after the conchospore germination. These results are consistent with a previous study on cytogenetic analysis of the chimaera blade formation (Ohme and Miura 1988, Plant Sci 57:135–140) and not consistent with a recent microscopic study (Wang et al. 2006, Phycol Res 54:201–207) which proposed that the first meiotic division occurs at the conchospore formation and the second division at the germination.  相似文献   

16.
Gap junctions that allow for a direct exchange of second messenger and ions are the most conserved cellular structures in multicellular organisms. We have isolated and characterized a Bombyx mori gene innexin3 that encodes a new member of the innexin family required for the early embryonic development. The BmINX3 mRNA was 1,814 nucleotide residues in length, and the deduced amino acid sequence of BmInx3 shared 74% similarity with Apis melifera innexin3. The expression profile of the BmINX3 mRNA is similar to that of previously described BmINX2, expressed in ovary and testis after 5th instar larvae and in fat body after gut purge. However, during embryogenesis, the expression of BmINX3 mRNA is restricted to the blastokinesis stage. Microscopic observation of the BmInx2 and BmInx3 fused to fluorescent proteins showed an overlapping cytoplasmic expression, whereas the BmInx4 is accumulated in the cytoplasmic surface at which two cells have physical contact. This finding of innexins distribution in silkworm would provide an essential basis for future studies of the functions and interactions of innexins.  相似文献   

17.
C. elegans body-wall muscle cells are electrically coupled through gap junctions. Previous studies suggest that UNC-9 is an important, but not the only, innexin mediating the electrical coupling. Here we analyzed junctional current (I j) for mutants of additional innexins to identify the remaining innexin(s) important to the coupling. The results suggest that a total of six innexins contribute to the coupling, including UNC-9, INX-1, INX-10, INX-11, INX-16, and INX-18. The I j deficiency in each mutant was rescued completely by expressing the corresponding wild-type innexin specifically in muscle, suggesting that the innexins function cell-autonomously. Comparisons of I j between various single, double, and triple mutants suggest that the six innexins probably form two distinct populations of gap junctions with one population consisting of UNC-9 and INX-18 and the other consisting of the remaining four innexins. Consistent with their roles in muscle electrical coupling, five of the six innexins showed punctate localization at muscle intercellular junctions when expressed as GFP- or epitope-tagged proteins, and muscle expression was detected for four of them when assessed by expressing GFP under the control of innexin promoters. The results may serve as a solid foundation for further explorations of structural and functional properties of gap junctions in C. elegans body-wall muscle.  相似文献   

18.
White TW  Wang H  Mui R  Litteral J  Brink PR 《FEBS letters》2004,577(1-2):42-48
Unlike many other ion channels, unrelated gene families encode gap junctions in different animal phyla. Connexin and pannexin genes are found in deuterostomes, while protostomal species use innexin genes. Connexins are often described as vertebrate genes, despite the existence of invertebrate deuterostomes. We have cloned connexin sequences from an invertebrate chordate, Halocynthia pyriformis. Invertebrate connexins shared 25-40% sequence identity with human connexins, had extracellular domains containing six invariant cysteine residues, coding regions that were interrupted by introns, and formed functional channels in vitro. These data show that gap junction channels based on connexins are present in animals that predate vertebrate evolution.  相似文献   

19.
Innexins are a family of membrane proteins involved in the formation of gap junctions in invertebrates. They have been found to participate in several aspects of cell differentiation and in embryonic patterning through the formation of specific intercellular communication channels. We present here data showing that the recently identified innexin of the marine worm Chaetopterus variopedatus is expressed only in particular cells of the early stage, demonstrating cell specificity of innexin expression also in polychaete annelids. Phylogenetic analysis of all known innexins results in a phylogenetic tree clearly distinguishing insect, nematode, and other invertebrate innexins. Comparative analysis of proteins and known related genes shows that the apparent similarity of protein composition, overall structural organization, and specificity of cellular expression, typical of innexins of all studied organisms, correspond to highly heterogeneous gene structures even for genes that are in close contiguity on the same chromosome. A possible evolutionary motive producing this situation is discussed.  相似文献   

20.
Wnt signaling has been implicated in posterior patterning in short-germ insects, including the red flour beetle Tribolium castaneum (Bolognesi et al. Curr Biol 18:1624–1629, 2008b; Angelini and Kaufman Dev Biol 283:409–423, 2005; Miyawaki et al. Mech Dev 121:119–130, 2004). Specifically, depletion of Wnt ligands Tc-Wnt1 and Tc-WntD/8 produces Tribolium embryos lacking abdominal segments. Similar phenotypes are produced by depletion of Tc-porcupine (Tc-porc) or Tc-pangolin (Tc-pan), indicating that the signal is transmitted through the canonical Wnt pathway (Bolognesi et al. Curr Biol 18:1624–1629, 2008b). Here we show that RNAi for the receptor Tc-arrow produced similar truncated phenotypes, providing additional evidence supporting canonical signal transduction. Furthermore, since in Tribolium segments are defined sequentially by a pair-rule gene circuit that, when interrupted, produces truncated phenotypes (Choe et al. Proc Natl Acad Sci U S A 103:6560–6564, 2006), we investigated the relationship between loss of Wnt signaling and this pair-rule gene circuit. After depletion of the receptor Tc-arrow, expression of Tc-Wnt1 was noticeably absent from the growth zone, while Tc-WntD/8 was restricted to a single spot of expression in what remained of the posterior growth zone. The primary pair-rule genes Tc-runt (Tc-run) and Tc-even-skipped (Tc-eve) were expressed normally in the anterior segments, but were reduced to a single spot in the remnants of the posterior growth zone. Thus, expression of pair-rule genes and Tc-WntD/8 are similarly affected by depletion of Wnt signal and disruption of the posterior growth zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号