首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The promoters of a variety of plant genes are characterized by the presence of a G-box (CCACGTGG) or closely related DNA motifs. These genes often exhibit quite diverse expression characteristics and in many cases the G-box sequence has been demonstrated to be essential for expression. The G-box of the Arabidopsis rbcS-1A gene is bound by a protein, GBF, identified in plant nuclear extracts. Here we report the isolation of three Arabidopsis thaliana cDNA clones encoding GBF proteins referred to as GBF1, GBF2 and GBF3. GBF1 and GBF2 mRNA is present in light and dark grown leaves as well as in roots. In contrast, GBF3 mRNA is found mainly in dark grown leaves and in roots. The deduced amino acid sequences of the three cDNAs indicate that each encodes a basic/leucine zipper protein. In addition, all three proteins are characterized by an N-terminal proline-rich domain. Homodimers of the three proteins specifically recognize the G-box motif, with GBF1 and GBF3 binding symmetrically to this palindromic sequence. In contrast, GBF2 binds to the symmetrical G-box sequence in such a way that the juxtaposition of the protein and the DNA element is clearly asymmetric and hence distinct from that observed for the other two proteins. The fact that GBF1, GBF2 and GBF3 possess both distinct DNA binding properties and expression characteristics prompt us to entertain the notion that these proteins may individually mediate distinct subclasses of expression properties assigned to the G-box. Furthermore, we demonstrate that GBF1, GBF2 and GBF3 heterodimerize and these heterodimers also interact with the G-box, suggesting a potential mechanism for generating additional diversity from these GBF proteins.  相似文献   

4.
The G-box is an important regulatory element found in the promoters of many different genes. Four members of an Arabidopsis gene family encoding basic leucine zipper proteins (GBFs) which bind the G-box have previously been cloned. To study GBFs, a polyclonal antibody was raised against GBF1 expressed in bacteria. This antibody also recognized GBF2 and GBFS. Immunoblot analysis of nuclear and cytoplasmic fractions from Arabidopsis and soybean (SB-M) cell cultures indicated that over 90% of proteins detected with anti-GBF1 were cytoplasmic. Electrophoretic mobility shift assays indicated that over 90% of G-box binding activity was cytoplasmic. DMA affinity chromatography demonstrated that each protein detected with anti-GBF1 specifically bound the G-box. To study individual GBFs, DNA constructs fusing GBF1, GBF2 and GBF4 to GUS were made and assayed by transient expression in SB-M protoplasts. Of GUS:GBF1 proteins, 50–62% were localized in the cytoplasm under all conditions tested, while 97% of GUS:GBF4 was localized in the nucleus. By contrast, whereas about 50% of GUS:GBF2 was found in the cytoplasm of dark-grown cells, over 80% of this protein was found in the nucleus in cells cultured under blue light. Deletion analysis of GBF1 identified a region between amino acids 112 and 164 apparently required for cytoplasmic retention. These results suggest the intriguing possibility that limitation of nuclear access may be an important control on GBF activity. In particular, GBF2 is apparently specifically imported into the nucleus in response to light.  相似文献   

5.
6.
7.
8.
9.
10.
Characterization of a maize G-box binding factor that is induced by hypoxia   总被引:10,自引:0,他引:10  
G-box cis-acting DNA sequence elements are present in the promoter region of a number of signal-inducible plant genes. In many cases this motif is essential for gene expression. Maize nuclear extracts contain a protein complex that binds specifically to the G-box sequence. Previously, a protein called GF14 was described that is physically associated with the G-box binding complex, but is not a DNA-binding factor in and of itself. This paper reports the isolation of a cDNA encoding a maize G-box binding factor (GBF). The deduced amino acid sequence indicates that maize GBF1 is a basic region-leucine zipper protein. GBF1 binds to the G-box element with specificity similar to that of the binding activity in nuclear extracts. Furthermore, maize GBF1 and the factor detected in nuclear extract are identical in their molecular weight and are immunologically related. GBF1 mRNA accumulates rapidly in hypoxically induced maize cells prior to the increase in Adh1 mRNA levels. Taken together with results that indicate that GBF1 binds to the hypoxia-responsive promoter of maize Adh1, these observations suggest that GBF1 may be one of the factors involved in the activation of Adh1.  相似文献   

11.
Characterization of the Arabidopsis Adh G-box binding factor.   总被引:16,自引:4,他引:12       下载免费PDF全文
  相似文献   

12.
13.
14.
15.
16.
To characterize the lipoyl-bearing domain of the dihydrolipoyl transacylase (E2) component, purified branched-chain alpha-keto acid dehydrogenase complex from bovine liver was reductively acylated with [U-14C] alpha-ketoisovalerate in the presence of thiamin pyrophosphate and N-ethylmaleimide. Digestion of the modified complex with increasing concentrations of trypsin sequentially cleaved the E2 polypeptide chain (Mr = 52,000) into five radiolabeled lipoyl-containing fragments in the order of L1 (Mr = 28,000), L2 (Mr = 24,500), L3 (Mr = 21,000), L4 (Mr = 15,000) to L5 (Mr = 14,000) as determined by the autoradiography of sodium dodecyl sulfate-polyacrylamide gel. In addition, a lipoate-free inner E2 core consisting of fragment A (Mr = 26,000) and fragment B (Mr = 22,000) was produced. Fragment A contains the active site for transacylation reaction and fragment B is the subunit-binding domain. Fragment L5 and fragment B were stable and resistant to further tryptic digestion. Mouse antiserum against E2 reacted only with fragments L1, L2, and L3, and did not bind fragments L4, L5, A, and B as judged by immunoblotting analysis. The anti-E2 serum strongly inhibited the overall reaction catalyzed by the complex, but was without effect on the transacylation activity of E2. Measurement of incorporation of [1-14C]isobutyryl groups into the E2 subunit indicated the presence of 1 lipoyl residue/E2 chain. Based on the above data, a model is proposed in which the lipoyl-bearing domain is connected to the inner E2 core via a trypsin-sensitive hinge. The lipoyl-bearing domain contains five consecutive tryptic sites (L1 to L5), with the L1 site in the hinge region, and the L5 site next to the terminal lipoyl-binding sequence. An exposed and antigenic region is located between L1 and L4 tryptic sites of the lipoyl-bearing domain. The region accounts for about 24% of the E2 chain length. Binding of antibodies to this region probably impairs the mobility of the lipoyl-containing polypeptide, resulting in an interruption of the active-site interactions that are necessary for the overall reaction. The lack of antigenicity and resistance to tryptic digestion indicate a highly folded conformation for fragment L5, the limit polypeptide carrying the single lipoyl residue.  相似文献   

17.
18.
19.
Fed-batch cultures of recombinant E. coli HB101 harboring expression plasmid pTRLBT1 or pTREBT1, with acetate concentration monitoring, are investigated to obtain high cell density and large amounts of human epidermal growth factor (hEGF). The expression plasmid pTRlBT1 contains a synthetic hEGF gene attached downstream of the N-terminal fragment of the trp L gene preceded by the trp promoter. The expression plasmid pTREBT1 contains the same coding sequence attached downstream of the N-terminal fragment of the trp E gene preceded by the trp promoter, trp L gene, and attenuator region. E. coli harboring pTREBT1 produces 0.56 mg/L hEGE and immediately degrades it. On the other hand E. coli harboring pTRLBT1 produces 6.8 mg/L hEGF and does not decompose it. Prominent inclusion bodies are observed in E. coli cells harboring pTRLBT1 using an election microscope. To Cultivate E. coli harboring pTRLBT1, a fed-batch culture system, divided into a cell growth step and an hEGF production step, is carried out. The cells grow smoothly without acetate-induced inhibition. Cell concentration and hEGF quantity reach the high values of 21 g/L and 60 mg/L, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号