首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosome alternative oxidase (TAO) and the cytochrome oxidase (COX) are two developmentally regulated terminal oxidases of the mitochondrial electron transport chain in Trypanosoma brucei. Here, we have compared the import of TAO and cytochrome oxidase subunit IV (COIV), two stage-specific nuclear encoded mitochondrial proteins, into the bloodstream and procyclic form mitochondria of T. brucei to understand the import processes in two different developmental stages. Under in vitro conditions TAO and COIV were imported and processed into isolated mitochondria from both the bloodstream and procyclic forms. With mitochondria isolated from the procyclic form, the import of TAO and COIV was dependent on the mitochondrial inner membrane potential (delta psi) and required protein(s) on the outer membrane. Import of these proteins also depended on the presence of both internal and external ATP. However, import of TAO and COIV into isolated mitochondria from the bloodstream form was not inhibited after the mitochondrial delta psi was dissipated by valinomycin, CCCP, or valinomycin and oligomycin in combination. In contrast, import of these proteins into bloodstream mitochondria was abolished after the hydrolysis of ATP by apyrase or removal of the ATP and ATP-generating system, suggesting that import is dependent on the presence of external ATP. Together, these data suggest that nuclear encoded proteins such as TAO and COIV are imported in the mitochondria of the bloodstream and the procyclic forms via different mechanism. Differential import conditions of nuclear encoded mitochondrial proteins of T. brucei possibly help it to adapt to different life forms.  相似文献   

2.
3.
Trypanosome alternative oxidase (TAO) is the cytochrome-independent terminal oxidase of the mitochondrial electron transport chain. TAO is a diiron protein that transfers electrons from ubiquinol to oxygen, reducing the oxygen to water. The mammalian bloodstream forms of Trypanosoma brucei depend solely on TAO for respiration. The inhibition of TAO by salicylhydroxamic acid (SHAM) or ascofuranone is trypanocidal. TAO is present at a reduced level in the procyclic form of T. brucei, where it is engaged in respiration and is also needed for developmental processes. Alternative oxidases similar to TAO have been found in a wide variety of organisms but not in mammals, thus rendering TAO an important chemotherapeutic target for African trypanosomiasis.  相似文献   

4.
ABSTRACT. The glycerophosphate oxidase (GPO), the unique terminal oxidase of bloodstream trypanosome (TAO), appears to be functionally similar to the alternative oxidases of some plants and higher fungi. Immunoblotting of mitochondrial proteins of bloodstream trypomastigotes of Trypanosoma brucei brucei with monoclonal or polyclonal antibodies to Sauromatum guttatum (voodoo lily) and Symplocarpus foetidus (skunk cabbage) alternative oxidases respectively revealed two proteins of about 33 kDa (p33) and 68 kDa (p68). These proteins are not present in procyclic trypomastigotes. Electrophoresis under rigorous denaturing conditions indicated p68 to be the dimer of p33. Indirect immunofluorescent studies of bloodstream and procyclic trypomastigotes with monoclonal antibody to plant alternative oxidase also showed the localization of 33 kDa protein in the mitochondria of the bloodstream trypomastigotes. The functional TAO activity could be solubilized efficiently from the mitochondrial membrane of the bloodstream trypomastigotes by 1% NP-40 or 10 mM lauryl maltoside. When fractionated by Superose 12 gel filtration chromatography, p33 was co-purified with the TAO enzymatic activity. The apparent molecular size of the active enzyme complex was found to be 160 kDa. Gradual disappearance of the 33 kDa protein and the TAO enzymatic activity were well correlated during in vitro differentiation of the bloodstream to procyclic trypomastigotes. This study implies that the net biosynthesis of p33, an essential subunit of TAO, is decreased during differentiation from bloodstream to procyclic trypomastigotes.  相似文献   

5.
One- and two-dimensional gel electrophoresis of the solubilized mitochondrial proteins of bloodstream and procyclic trypomastigote Trypanosoma brucei rhodesiense and radiolabeling of proteins in the presence of cycloheximide were used to identify proteins synthesized in the trypanosome mitochondrion. The proteins which comprise the mitochondrion were found to be very similar in both bloodstream and procyclic trypomastigotes, but do differ in their level of synthesis. A protein putatively identified as subunit II of cytochrome oxidase (EC 1.9.3.1) was detected in mitochondria from both the procyclic and bloodstream organisms. The presence of this protein in bloodstream trypomastigotes and the overall similarity of protein content in the trypanosome mitochondria is noteworthy in view of the fact that bloodstream trypomastigotes have a repressed mitochondrion with no detectable tricarboxylic acid cycle or cytochrome electron transport chain.  相似文献   

6.
Cyanide-insensitive trypanosome alternative oxidase (TAO) is the terminal oxidase of the respiratory chain of long slender bloodstream forms of the African trypanosome, which causes sleeping sickness in humans and nagana in cattle. TAO has been targeted for the development of anti-trypanosomal drugs, because it does not exist in the host. In this study, we established a system for overproduction of highly active TAO in Eschericia coli heme-deficient mutant. Kinetic analysis of recombinant enzyme and TAO in Trypanosoma brucei brucei mitochondria revealed that recombinant TAO retains the properties of native enzyme, indicating that recombinant TAO is quite valuable for further biochemical study of TAO.  相似文献   

7.
Cyanide-insensitive trypanosome alternative oxidase (TAO) is the terminal oxidase of the respiratory chain of long slender bloodstream forms of the African trypanosome, which causes sleeping sickness in human and nagana in cattle. TAO has been targeted for the development of anti-trypanosomal drugs because it does not exist in the host. The cDNA for TAO has been cloned from Trypanosoma brucei brucei EATRO110 strain and has been used for further characterization. In this study, we found amino acid sequence of the C-terminal part of TAO from the strain that we are using, T. b. brucei TC221, is considerably different from that of the EATRO110 strain.  相似文献   

8.
9.
Trypanosome alternative oxidase as a target of chemotherapy   总被引:4,自引:0,他引:4  
Parasites have developed a variety of physiological functions necessary for their survival within the specialized environment of the host. Using metabolic systems that are very different from those of the host, they can adapt to low oxygen tension present within the host animals. Most parasites do not use the oxygen available within the host to generate ATP, but rather employ systems anaerobic metabolic pathways. The enzymes in these parasite-specific pathways are potential targets for chemotherapy.Cyanide-insensitive trypanosome alternative oxidase (TAO) is the terminal oxidase of the respiratory chain of long slender bloodstream forms of the African trypanosome, which causes sleeping sickness in human and nagana in cattle. TAO has been targeted for the development of anti-trypanosomal drugs because it does not exist in the host. Recently, we found the most potent inhibitor of TAO to date, ascofuranone, a compound isolated from the phytopathogenic fungus, Ascochyta visiae.  相似文献   

10.
All four life cycle stages (bloodstream, procyclic, epimastigote, and metacyclic) of Trypanosoma congolense IL 3000 were assayed with an oxygen electrode (polarograph) for the presence of terminal oxidases and carbon-source preference. In addition, these stages were used for histochemical analysis of mitochondrial activity using rhodamine 123, nitroblue tetrazolium, and diaminobenzidine. Morphometry was used to compare mitochondrial volumes and surface area among the different life cycle stages. It was found that in contrast to epimastigote forms, which were metabolically almost identical to procyclic forms, metacyclic forms showed characteristics of, and seemed preadapted to, differentiation into the bloodstream stage. While mitochondrial NAD+ diaphorase activity and an electrochemical potential were detected in all life cycle stages, metacyclic metabolism was glucose-based and terminal oxidase activity was primarily dependent upon the trypanosome alternative oxidase with the contribution of cyanide-sensitive respiration accounting for only 20-30% of the total respiratory capacity.  相似文献   

11.
Monomorphic bloodstream forms of Trypanosoma brucei, grown in the mammal, are deficient in aconitase and 2-oxoglutarate dehydrogenase and they do not respire in the presence of the substrates citrate, cis-aconitate, succinate, proline or 2-oxoglutarate. When grown in vitro low levels of aconitase, succinate oxidase and proline oxidase are detected. Addition of citrate/cis-aconitate at 37 degrees C to bloodstream forms leads to the formation of aconitase and proline oxidase. Most cells undergo an 'abortive' transformation to non-dividing procyclic-like cells while some cells adapt to the presence of the citric acid cycle intermediates and continue to multiply as bloodstream forms. At 27 degrees C and in the presence of citrate/cis-aconitate bloodstream forms transform synchronously to dividing procyclic cells. Within 72 h the rate of respiration with proline, succinate and 2-oxoglutarate becomes similar to that in established procyclic cells while the rate of glucose oxidation decreases. The possible role of citric acid cycle intermediates in determining whether a trypanosome will retain the properties of a bloodstream trypomastigote or differentiate to a procyclic trypomastigote is discussed.  相似文献   

12.
13.
ABSTRACT. Rhodamine 123, a membrane potential-specific dye, has been evaluated as a probe to monitor the function of the mitochondrion in long slender bloodstream and procyclic trypomastigotes of several Trypanosoma brucei spp. By epifluorescence microscopy, mitochondrial development has been followed in long slender bloodstream and procyclic organisms stained with rhodamine 123. to photograph stained long slender bloodstream forms, it was necessary to develop a method to completely immobilize viable organisms. In both parasite forms, as the cell cycle progressed, the mitochondrion developed from a thread-like structure to a highly branched organelle. A dramatic reorganization occurred preceding cytokinesis to produce two progeny thread-like structures which were partitioned into newly formed daughter cells. the organelle within the long slender trypomastigote was found to stain optimally at 0.3 μ/ml of rhodamine 123, while the procyclic form required 3.0 μ/ml. the results suggest that the plasma membrane potential is higher in the long slender parasite than in the procyclic form. the effects of inhibitors that disrupt mitochondrial function were examined in long slender and procyclic parasites, and some of these agents were shown to affect rhodamine 123 accumulation and retention. In long slender trypomastigotes the trypanosome alternative oxidase does not appear to be coupled to proton pumping, whereas in procyclic organisms the effects of inhibitors indicate that this oxidase may be coupled to a pathway that is branched preceding an antimycin A1-sensitive site.  相似文献   

14.
A protein has been purified from the membranes of bloodstream forms of Trypanosoma brucei brucei. The purified material contained a single polypeptide chain of molecular mass 67 kilodaltons as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; under "native" conditions it migrated through a Sephacryl S-300 column with a similar molecular mass. The purified protein catalysed electron transfer from sn-glycerol 3-phosphate to oxygen with the subsequent formation of water. Electron transfer by the purified enzyme to O2 was dependent on the presence of low concentrations of the mediator phenazine methosulfate. This protein is clearly the major membrane-bound sn-glycerol-3-phosphate dehydrogenase, but it also has some characteristics suggestive of the trypanosome alternative oxidase activities.  相似文献   

15.
Differentiation in African trypanosomes (Trypanosoma brucei) entails passage between a mammalian host, where parasites exist as a proliferative slender form or a G0-arrested stumpy form, and the tsetse fly. Stumpy forms arise at the peak of each parasitaemia and are committed to differentiation to procyclic forms that inhabit the tsetse midgut. We have identified a protein tyrosine phosphatase (TbPTP1) that inhibits trypanosome differentiation. Consistent with a tyrosine phosphatase, recombinant TbPTP1 exhibits the anticipated substrate and inhibitor profile, and its activity is impaired by reversible oxidation. TbPTP1 inactivation in monomorphic bloodstream trypanosomes by RNA interference or pharmacological inhibition triggers spontaneous differentiation to procyclic forms in a subset of committed cells. Consistent with this observation, homogeneous populations of stumpy forms synchronously differentiate to procyclic forms when tyrosine phosphatase activity is inhibited. Our data invoke a new model for trypanosome development in which differentiation to procyclic forms is prevented in the bloodstream by tyrosine dephosphorylation. It may be possible to use PTP1B inhibitors to block trypanosomatid transmission.  相似文献   

16.
17.
Trypanosoma brucei procyclic trypomastigotes were made permeable by using digitonin (0-70 micrograms/mg of protein). This procedure allowed exposure of coupled mitochondria to different substrates. Only succinate and glycerol phosphate (but not NADH-dependent substrates) were capable of stimulating oxygen consumption. Fluorescence studies on intact cells indicated that addition of succinate stimulates NAD(P)H oxidation, contrary to what happens in mammalian mitochondria. Addition of malonate, an inhibitor of succinate dehydrogenase, stimulated NAD(P)H reduction. Malonate also inhibited intact-cell respiration and motility, both of which were restored by further addition of succinate. Experiments carried out with isolated mitochondrial membranes showed that, although the electron transfer from succinate to cytochrome c was inhibitable by antimycin, NADH-cytochrome c reductase was antimycin-insensitive. We postulate that the NADH-ubiquinone segment of the respiratory chain is replaced by NADH-fumarate reductase, which reoxidizes the mitochondrial NADH and in turn generates succinate for the respiratory chain. This hypothesis is further supported by the inhibitory effect on cell growth and respiration of 3-methoxyphenylacetic acid, an inhibitor of the NADH-fumarate reductase of T. brucei.  相似文献   

18.
The mitochondrial H(+)-ATPase of the parasitic protozoan Trypanosoma brucei is shown to be developmentally regulated through the T. brucei life cycle as has been shown for components of the mitochondrial electron transport chain. We have substantiated our results by assaying not only for oligomycin-sensitive ATPase activity but also by determining the level of ATP synthetic activity. These results show that the level of ATPase present in the procyclic form of T. brucei is increased by at least threefold from that of the early bloodstream form while the ATPase activity in the late bloodstream form is only about twofold higher than the early form. ATP synthesis activity shows these same results. We have determined the level of ATP synthase protein present in the life cycle stages by Western analysis employing the antibodies that we have raised against both the water soluble F1 and the membrane-associated F0 moieties which we have purified from T. brucei. The Western blots of the procyclic form show strong reactivity with both the F0 and F1 antibodies. The other two life cycle stages, the early and the late bloodstream forms, show considerably less reactivity, paralleling the activity results. Electron micrographs of the sonicated mitochondrial fraction show inverted vesicles which are studded with knobby H(+)-ATPase in the procyclic form. The early bloodstream vesicles show very few of these characteristic structures, while the late bloodstream form shows a range of vesicles from nearly nude to partially studded.  相似文献   

19.
CoQ links the sn-glycerol-3-phosphate dehydrogenase and oxidase components of the cyanide-insensitive, non-cytochrome-mediated respiratory system of bloodstream African trypanosomes. In this and other characteristics, their respiratory system is similar to the alternative oxidase of plants. The parasites contain 206 ng of CoQ9 mg protein-1 which co-sediments with respiratory activity. The redox state of this CoQ responds in a manner consistent with respiratory function: 60% being in the reduced form when substrate is available and the oxidase is blocked; 13% being in the reduced form when the oxidase is functioning and there is no substrate. The addition of CoQ to aceton-extracted cells stimulates salicylhydroxamic acid-sensitive respiration by 56%. After inhibition of respiration by digitonin-mediated dispersal of the electron transport components, liposomes restore 40% of respiratory activity while liposomes containing CoQ restore 66% of this activity. A less hydrophobic analogue, reduced decyl CoQ, serves as a direct substrate for the trypanosome oxidase supporting full salicylhydroxamic acid-sensitive respiration. After digitonin disruption of electron transport, the nonreduced form of this synthetic substrate can reestablish the chain by accepting electrons from dispersed sn-glycerol-3-phosphate dehydrogenase and transferring them to the dispersed oxidase. Similarities between the alternative oxidase of plants and the oxidase of the trypanosome respiratory system include: mitochondrial location, lack of oxidative phosphorylation, linkage of a dehydrogenase and an oxidase by CoQ, lack of sensitivity to a range of mitochondrial inhibitors, and sensitivity to a spectrum of inhibitors which selectively block transfer of electrons from reduced CoQ to the terminal oxidase but do not block electron transfer to the cytochrome bc1 complex of the mammalian cytochrome chain.  相似文献   

20.
The surface of the bloodstream form of the African trypanosome, Trypansoma brucei, is covered with about 10(7) molecules of the variant surface glycoprotein (VSG), a protein tethered to the plasma membrane by a glycosyl-phosphatidylinositol (GPI) membrane anchor. This anchor is cleavable by an endogenous GPI-specific phospholipase C (GPI-PLC). GPI-PLC activity is down regulated when trypanosomes differentiate from the bloodstream form to the procyclic form found in the tsetse fly vector. We have mapped the GPI-PLC locus in the trypanosome genome and have examined the mechanism for this developmental regulation in T. brucei. Southern blot analysis indicates a single-copy gene for GPI-PLC, with two allelic variants distinguishable by two NcoI restriction fragment length polymorphisms. The gene was localized solely to a chromosome in the two-megabase compression region by contour-clamped homogeneous electric field gel electrophoresis. No rearrangement of the GPI-PLC gene occurs during differentiation to procyclic forms, which could potentially silence GPI-PLC gene expression. Enzymological studies give no indication of a diffusible inhibitor of GPI-PLC activity in procyclic forms, and Western immunoblot analysis reveals no detectable GPI-PLC polypeptide in these forms. Therefore, it is highly unlikely that the absence of GPI-PLC activity in procyclic forms is due to posttranslational control. Northern (RNA) blot analysis reveals barely detectable levels of GPI-PLC mRNA in procyclic forms; therefore, regulation of GPI-PLC activity in these forms correlates with the steady-state mRNA level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号