首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The search for homologous sequences promoted by RecA protein in vitro involves a presynaptic filament and naked duplex DNA, the multiple contacts of which produce nucleoprotein networks or coaggregates. The single-stranded DNA within the presynaptic filaments, however, is extended to an axial spacing 1.5 times that of B-form DNA. To investigate this paradoxical difference between the spacing of bases in the RecA presynaptic filament versus the target duplex DNA, we explored the effect of heterologous contacts on the conformation of DNA, and vice versa. In the presence of wheat germ topoisomerase I, RecA presynaptic filaments induced a rapid, limited reduction in the linking number of heterologous circular duplex DNA. This limited unwinding of heterologous duplex DNA, termed heterologous unwinding, was detected within 30 seconds and reached a steady state within a few minutes. Presynaptic filaments that were formed in the presence of ATP gamma S and separated from free RecA protein by gel filtration also generated a ladder of topoisomers upon incubation with relaxed duplex DNA and topoisomerase. The inhibition of heterologous contacts by 60 mM-NaCl or 5 mM-ADP resulted in a corresponding decrease in heterologous unwinding. In reciprocal fashion, the stability or number of heterologous contacts with presynaptic filaments was inversely related to the linking number of circular duplex DNA. These observations show that heterologous contacts with the presynaptic filament cause a limited unwinding of the duplex DNA, and conversely that the ability of the DNA to unwind stabilizes transient heterologous contacts.  相似文献   

2.
RecA protein will catalyze the in vitro pairing of homologous DNA molecules. To further explore the events involved in the search for homology, we have applied a nitrocellulose filter binding assay to follow pairing, and a sedimentation assay to follow the generation of aggregates (termed coaggregates) formed between RecA-complexed single-stranded (ss) DNA and double stranded (ds) DNA. Electron microscopy (EM) was used to visualize the structures involved. RecA protein promoted the pairing of circular M13 ssDNA and linear M13mp7 dsDNA efficiently in the absence of coaggregates. Indeed, pairing of homologous ss- and dsDNAs involved coaggregate formation only if the dsDNA was circular. For DNAs containing only a few hundred base-pairs of homology, for example pUC7 dsDNA and M13mp7 ssDNA, pairing and joint formation was observed if the dsDNA was superhelical but not if it was topologically relaxed or linear with the homology internal to an end of the dsDNA. The effect of non-covalently attached heterologous dsDNA on the RecA-promoted joining of M13 ssDNA and linear M13mp7 dsDNA (with non-M13 sequences at both ends) was found to depend on the topology and concentration of the heterologous DNA. A tenfold excess of superhelical pBR322 DNA strongly inhibited pairing. However, addition of relaxed or linear pBR322 DNA to the pairing reaction had little effect. As seen by EM, superhelical pBR322 DNA inhibited joint formation by excluding the homologous dsDNA form the coaggregates. EM also revealed heterologous DNA interactions presumably involved in the search for homology. Here the use of EM has provided a direct visualization of the form and architecture of coaggregates revealing a dense interweaving of presynaptic filaments and dsDNA.  相似文献   

3.
The RecA and SSB proteins will catalyze the joining of two DNA molecules containing homologous sequences but lacking homologous ends in a reaction termed paranemic joining. The absence of homologous ends can be achieved by (1) pairing two circular DNAs or (2) using linear DNA(s) with ends lacking homology to the pairing partner. Here we have used electron microscopy (EM) to examine such pairings. Circular M13 single-stranded (ss) DNA enveloped by RecA protein into a presynaptic filament was paired with linear M13mp7 double-stranded (ds) DNA containing non-M13 sequences at its ends. Joint complexes were frequently seen in which the dsDNA was joined with the presynaptic filament over several kilobase (10(3) bases) lengths of the dsDNA. In this region, the presynaptic filament appeared disorganized as contrasted to the customary helical structure of the filament containing only a single strand of DNA. The same ultrastructure, but with greater detail, was observed when the samples were prepared for EM without fixation using a new method of fast-freezing and freeze-drying. EM immunogold staining demonstrated the presence of SSB protein in the disorganized region containing all three strands, but not in the regular helically arranged region. Psoralen photo-crosslinking of the DNA in the joint complexes revealed that the three DNA strands were in close proximity only over a single short (200 to 300 base-pairs) region. The joining of nicked circular M13 dsDNA and presynaptic filaments containing circular M13 ssDNA resulted in the intertwining of the dsDNA about the circular presynaptic filament. The joints produced in this case were short, as was the single region of psoralen photo-crosslinking of the three DNA strands. A model of how these long three-stranded joints form is presented involving the movement of a short "true" paranemic joint along the presynaptic filament.  相似文献   

4.
Synapsis and the formation of paranemic joints by E. coli RecA protein   总被引:22,自引:0,他引:22  
M Bianchi  C DasGupta  C M Radding 《Cell》1983,34(3):931-939
E. coli RecA protein promotes the homologous pairing of a single strand with duplex DNA even when certain features of the substrates, such as circularity, prohibit the true intertwining of the newly paired strands. The formation of such nonintertwined or paranemic joints does not require superhelicity, and indeed can occur with relaxed closed circular DNA. E. coli topoisomerase I can intertwine the incoming single strand in the paranemic joint with its complement, thereby topologically linking single-stranded DNA to all of the duplex molecules in the reaction mixture. The efficiency of formation of paranemic joints, the time course, and estimates of their length, all suggest that they represent true synaptic intermediates in the pairing reaction promoted by RecA protein.  相似文献   

5.
Homologous pairing of single strands with duplex DNA promoted by recA protein occurred without a lag only when the protein was preincubated with ATP and single-stranded DNA. The rate-limiting presynaptic interaction of recA protein and single strands showed a high temperature coefficient: it proceeded 30 times more slowly at 30 degrees C than at 37 degrees C, whereas synapsis showed a normal temperature coefficient. Thus, the presynaptic phase could be separated experimentally from the rest of the reaction by preincubation of single strands with recA protein and ATP at 37 degrees C, followed by a shift to 30 degrees C before double-stranded DNA was added. The presynaptic phase was an order of magnitude more sensitive to inhibition by ADP than was subsequent strand exchange. Presynaptic complexes that were formed at 37 degrees C decayed only slowly at 30 degrees C, but Escherichia coli single strand binding protein caused complexes to form rapidly at 30 degrees C which indicates that single strand binding protein accelerated the rate of formation of complexes. Preincubation synchronized the initial pairing reaction, and further revealed the rapid formation of nascent heteroduplex DNA 250-300 base pairs in length.  相似文献   

6.
Under conditions that diminish secondary structure in single-stranded DNA, stable presynaptic filaments can be formed by recA protein in the presence of the nonhydrolyzable analog ATP gamma S, without the need for Escherichia coli single strand binding protein. Such stable presynaptic filaments resemble those formed in the presence of ATP and pair efficiently with homologous duplex DNA. Since this kind of stable filament does not displace a strand from the duplex molecule, it provides a model substrate to study synapsis independent of the earlier and later stages of the recA reaction. Even though detectable strand displacement did not occur in the presence of ATP gamma S, both single strand and double strand breaks in duplex DNA stimulated homologous pairing. These and related observations support the view that the presynaptic nucleoprotein filament and naked duplex DNA intertwine to form a nascent joint in which the duplex DNA is partially unwound, i.e. in which the pitch of the involved duplex segment is reduced.  相似文献   

7.
Homologous pairing of DNA molecules promoted by a protein from Ustilago   总被引:26,自引:0,他引:26  
E Kmiec  W K Holloman 《Cell》1982,29(2):367-374
A protein from mitotic cells of Ustilago maydis was purified on the basis of its ability to reanneal complementary single strands of DNA. The protein catalyzed the uptake of linear single strands by super-helical DNA, but only in reactions with homologous combinations of single-strand fragments and super-helical DNA from phages phi X174 and fd. No reaction occurred with heterologous combinations. The protein also efficiently paired circular single strands and linear duplex DNA molecules. The product was a joint molecule in which the circular single strand displaced one strand of the duplex. Efficient pairing depended upon ATP, and ATPase activity was found associated with the purified protein. ATP-dependent reannealing of complementary single strands was not detectable in the rec1 mutant of Ustilago, which is deranged in meiotic recombination, as complete tetrads are rare, and is defective in radiation-induced mitotic gene conversion.  相似文献   

8.
Networks of DNA and RecA protein are intermediates in homologous pairing   总被引:16,自引:0,他引:16  
S S Tsang  S A Chow  C M Radding 《Biochemistry》1985,24(13):3226-3232
Partial coating of single-stranded DNA by recA protein causes its aggregation, but conditions that promote complete coating inhibit independent aggregation of single strands and, instead, cause the mutually dependent conjunction of single- and double-stranded DNA in complexes that sediment at more than 10 000 S. This coaggregation is independent of homology but otherwise shares key properties of homologous pairing of single strands with duplex DNA: both processes require ATP, MgCl2, and stoichiometric amounts of recA protein; both are very sensitive to inhibition by salt and ADP. Coaggregates are closed domains that are intermediates in homologous pairing: they form faster than joint molecules, they include virtually all of the DNA in the reaction mixture, and they yield joint molecules nearly an order of magnitude faster than they exchange DNA molecules with the surrounding solution. The independent aggregation of single-stranded DNA differs in all respects except the requirement for Mg2+, and its properties correlate instead with those associated with the renaturation of complementary single strands by recA protein.  相似文献   

9.
RecA protein promotes homologous pairing by a reaction in which the protein first binds stoichiometrically to single-stranded DNA in a slow presyn-aptic step, and then conjoins single-stranded and duplex DNA, thereby forming a ternary complex. RecA protein did not pair molecules that shared only 30 bp homology, but, with full efficiency, it paired circular single-stranded and linear duplex molecules in which homology was limited to 151 bp at one end of the duplex DNA. The initial rate of the pairing reaction was directly related to the length of the heterologous part of the duplex DNA, which we varied from 0 to 3060 base pairs. Since interactions involving the heterologous part of a molecule speed the location of a small homologous region, we conclude that RecA protein promotes homologous alignment by a processive mechanism involving relative motion of conjoined molecules within the ternary complex.  相似文献   

10.
We have used circular dichroism and structure-directed drugs to identify the role of structural features, wide and narrow grooves in particular, required for the cooperative polymerization, recognition of homologous sequences, and the formation of joint molecules promoted by recA protein. The path of cooperative polymerization of recA protein was deduced by its ability to cause quantitative displacement of distamycin from the narrow groove of duplex DNA. By contrast, methyl green bound to the wide groove was retained by the nucleoprotein filaments comprised of recA protein-DNA. Further, the mode of binding of these ligands and recA protein to DNA was confirmed by DNaseI digestion. More importantly, the formation of joint molecules was prevented by distamycin in the narrow groove while methyl green in the wide groove had no adverse effect. Intriguingly, distamycin interfered with the production of coaggregates between nucleoprotein filaments of recA protein-M13 ssDNA and naked linear M13 duplex DNA, but not with linear phi X174 duplex DNA. Thus, these data, in conjunction with molecular modeling, suggest that the narrow grooves of duplex DNA provide the fundamental framework required for the cooperative polymerization of recA protein and alignment of homologous sequences. These findings and their significance are discussed in relation to models of homologous pairing between two intertwined DNA molecules.  相似文献   

11.
When recA protein was preincubated with single-stranded DNA in the presence of an ATP-regenerating system prior to the addition of homologous duplex DNA, a slow presynaptic step was eliminated, and the subsequent homologous pairing was revealed as a reaction whose rate exceeds by 1 or 2 orders of magnitude the calculated rate of spontaneous renaturation in 0.15 M NaCl at Tm -25 degrees C. The pairing reaction displayed saturation kinetics with respect to both single-stranded and double-stranded DNA, indicating the existence of a rate-limiting enzyme-substrate complex. The signal observed in the assay of the pairing reaction was due to pairing at free homologous ends of the duplex DNA, as well as pairing in the middle of the duplex molecule, away from a free end. The apparent rate of pairing of circular single strands with linear duplex DNA was equal to the sum of the rates of pairing at sites located at either end of the duplex DNA or at interior sites, but the apparent rates attributable to ends were greater, and nicks also stimulated the apparent rate.  相似文献   

12.
The RecA protein ofEscherichia coli catalyzes homologous pairing and strand exchange between a wide range of molecules showing nucleotide sequence complementarity, including a linear duplex and a single-stranded DNA molecule. We demonstrate that RecA can promote formation of joint molecules when the duplex contains an RNA/DNA hairpin and a single-stranded circle serves as the pairing partner. A chimeric RNA/DNA hairpin can be used to form stable joint molecules with as little as 15 bases of shared homology as long as the RNA stretch contains complementarity to the circle. The joint molecule bears some resemblance to a triple helical structure composed of RNA residues surrounded by two DNA strands which are in a parallel orientation. Evidence is presented that supports the notion that short stretches of RNA can be used in homologous pairing reactions at lengths below that required for DNA-DNA heteroduplex formation.  相似文献   

13.
The recA protein from Escherichia coli can homologously align two duplex DNA molecules; however, this interaction is much less efficient than the alignment of a single strand and a duplex. Three strand paranemic joints are readily detected. In contrast, duplex-duplex pairing is detected only when the incoming (second) duplex is negatively supercoiled, and even here the pairing is inefficient. The recA protein-promoted four strand exchange reaction is initiated in a three strand region, with efficiency increasing with the length of potential three strand pairing available for initiation. This indicates that a paranemic joint involving three DNA strands may be an important intermediate in all recA protein-mediated DNA strand exchange reactions and that the presence of three strands rather than four is a fundamental structural parameter of paranemic joints.  相似文献   

14.
S A Chow  S K Chiu  B C Wong 《Biochimie》1991,73(2-3):157-161
RecA protein promotes homologous pairing and symmetrical strand exchange between partially single-stranded duplex DNA and fully duplex molecules. We constructed circular gapped DNA with a defined gap length and studied the pairing reaction between the gapped substrate and fully duplex DNA. RecA protein polymerizes onto the single-stranded and duplex regions of the gapped DNA to form a nucleoprotein filament. The formation of such filaments requires a stoichiometric amount of RecA protein. Both the rate and yield of joint molecule formation were reduced when the pairing reaction was carried out in the presence of a sub-saturating amount of RecA protein. The amount of RecA protein required for optimal pairing corresponds to the binding site size of RecA protein at saturation on duplex DNA. The result suggests that in the 4-stranded system the single-stranded as well as the duplex regions are involved in pairing. By using fully duplex DNA that shares different lengths and regions of homology with the gapped molecule, we directly showed that the duplex region of the gapped DNA increased both the rate and yield of joint molecule formation. The present study indicates that even though strand exchange in the 4-stranded system must require the presence of a single-stranded region, the pairing that occurs in duplex regions between DNA molecules is functionally significant and contributes to the overall activity of the gapped DNA.  相似文献   

15.
When recA protein promotes homologous pairing and strand exchange involving circular single strands and linear duplex DNA, the protein first polymerizes on the single-stranded DNA to form a nucleoprotein filament which then binds naked duplex DNA to form nucleoprotein networks, the existence of which is independent of homology, but requires the continued presence of recA protein (Tsang, S. S., Chow, S. A., and Radding, C. M. (1985) Biochemistry 24, 3226-3232). Further experiments revealed that within a few minutes after the beginning of homologous pairing and strand exchange, these networks began to be replaced by a distinct set of networks with inverse properties: their formation depended upon homology, but they survived removal of recA protein by a variety of treatments. Formation of this second kind of network required that homology be present specifically at the end of the linear duplex molecule from which strand exchange begins. Escherichia coli single-stranded DNA-binding protein or phage T4 gene 32 protein largely suppressed the formation of this second population of networks by inactivating the newly formed heteroduplex DNA, which, however, could be reactivated when recA protein was dissociated by incubation at 0 degrees C. We interpret these observations as evidence of reinitiation of strand invasion when recA protein acts in the absence of auxiliary helix-destabilizing proteins. These observations indicate that the nature of the nucleoprotein products of strand exchange determines whether pairing and strand exchange are reversible or not, and they further suggest a new explanation for the way in which E. coli single-stranded DNA-binding protein and gene 32 protein accelerate the apparent forward rate of strand exchange promoted by recA protein, namely by suppressing initiation of the reverse reaction.  相似文献   

16.
The pairing of single- and double-stranded DNA molecules at homologous sequences promoted by recA and single-stranded DNA-binding proteins of Escherichia coli follows apparent first-order kinetics. The initial rate and first-order rate constant for the reaction are maximal at approximately 1 recA protein/3 and 1 single-stranded DNA-binding protein/8 nucleotides of single-stranded DNA. The initial rate increases with the concentration of duplex DNA; however, the rate constant is independent of duplex DNA concentration. Both the rate constant and extent of reaction increase linearly with increasing length of duplex DNA over the range 366 to 8623 base pairs. In contrast, the rate constant is independent of the size of the circular single-stranded DNA between 6,400 and 10,100 nucleotides. No significant effect on reaction rate is observed when a single-stranded DNA is paired with 477 base pairs of homologous duplex DNA joined to increasing lengths of heterologous DNA (627-2,367 base pairs). Similarly, heterologous T7 DNA has no effect on the rate of pairing. These findings support a mechanism in which a recA protein-single-stranded DNA complex interacts with the duplex DNA to produce an intermediate in which the two DNA molecules are aligned at homologous sequences. Conversion of the intermediate to a paranemic joint then occurs in a rate-determining unimolecular process.  相似文献   

17.
K Muniyappa  J Ramdas  E Mythili  S Galande 《Biochimie》1991,73(2-3):187-190
The ability of E coli recA protein to promote homologous pairing with linear duplex DNA bound to HU protein (Nucleosome cores) was found to be differentially affected. The formation of paranemic joint molecules was not affected whereas the formation of plectomic joint molecules was inhibited from the start of the reaction. The formation of paranemic joint molecules between nucleoprotein filaments of recA protein-circular single stranded DNA and closed circular duplex DNA is believed to generate positive supercoiling in the duplex DNA. We found that the positively superhelical duplex DNA was inert in the formation of joint molecules but could be converted into an active substrate, in situ, by the action of wheat germ topoisomerase I. These observations initiate an understanding of the structural features of E coli chromosome such as DNA supercoiling and nucleosome-like structures in homologous recombination.  相似文献   

18.
RecA protein promotes two distinct types of synaptic structures between circular single strands and duplex DNA; paranemic joints, where true intertwining of paired strands is prohibited and the classically intertwined plectonemic form of heteroduplex DNA. Paranemic joints are less stable than plectonemic joints and are believed to be the precursors for the formation of plectonemic joints. We present evidence that under strand exchange conditions the binding of HU protein, from Escherichia coli, to duplex DNA differentially affects homologous pairing in vitro. This conclusion is based on the observation that the formation of paranemic joint molecules was not affected, whereas the formation of plectonemic joint molecules was inhibited from the start of the reaction. Furthermore, introduction of HU protein into an ongoing reaction stalls further increase in the rate of the reaction. By contrast, binding of HU protein to circular single strands has neither stimulatory nor inhibitory effect. Since the formation of paranemic joint molecules is believed to generate positive supercoiling in the duplex DNA, we have examined the ability of positive superhelical DNA to serve as a template in the formation of paranemic joint molecules. The inert positively supercoiled DNA could be converted into an active substrate, in situ, by the action of wheat germ topoisomerase I. Taken collectively, these results indicate that the structural features of the bacterial chromosome which include DNA supercoiling and organization of DNA into nucleosome-like structures by HU protein modulate homologous pairing promoted by the nucleoprotein filaments of recA protein single-stranded DNA.  相似文献   

19.
We previously purified an activity from meiotic cell extracts of Saccharomyces cerevisiae that promotes the transfer of a strand from a duplex linear DNA molecule to complementary circular single-stranded DNA, naming it Strand Transfer Protein alpha (STP alpha) (Sugino, A., Nitiss, J., and Resnick, M. A. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 3683-3687). This activity requires no nucleotide cofactor but is stimulated more than 10-fold by the addition of yeast single-stranded DNA-binding proteins (ySSBs). In this paper, we describe the aggregation and strand transfer of double-stranded and single-stranded DNA promoted by STP alpha and ySSB. There is a good correlation between the aggregation induced by various DNA-binding proteins (ySSBs, DBPs and histone proteins) and the stimulation of STP alpha-mediated DNA strand transfer. This implies that the stimulation by ySSBs and other binding proteins is probably due to the condensation of single-stranded and double-stranded DNA substrates into coaggregates. Within these coaggregates there is a higher probability of pairing between homologous double-stranded and single-stranded DNA, favoring the initiation of strand transfer. The aggregation reaction is rapid and precedes any reactions related to DNA strand transfer. We propose that condensation into coaggregates is a presynaptic step in DNA strand transfer promoted by STP alpha and that pairing between homologous double- and single-stranded DNA (synapsis) occurs in these coaggregates. Synapsis promoted by STP alpha and ySSBs also occurs between covalently closed double-stranded DNA and single-stranded linear DNA as well as linear double-stranded and linear single-stranded DNAs in the absence of any nucleotide cofactors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号