首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of hydrogen bonded complexes between nucleic acid bases and acetamide has been studied by nuclear magnetic resonance in CDC13 at different temperatures. Pairs of hydrogen bonds are formed when acetamide binds to nucleic acid bases. Thermodynamic parameters have been computed and compared to those obtained for the association of carboxylic acids with nucleic acid bases. The role of hydrogen bonded complexes in the association of proteins with nucleic acids is discussed.  相似文献   

2.
3.
Energy of interaction between nitrogen bases of nucleic acid has been calculated as a function of parameters determining the mutual position of two bases. Refined atom-atom potential functions are suggested. These functions contain terms proportional to the first (electrostatics), sixth (or tenth for the atoms forming a hydrogen bond) and twelfth (repulsion of all atoms) powers of interatomic distance. Calculations have shown that there are two groups of minima of the base interaction energy. The minima of the first group correspond to coplanar arrangement of the base pairs and hydrogen bond formation. The minima of the second group correspond to the position of bases one above the other in almost parallel planes. There are 28 energy minima corresponding to the formation of coplanar pairs with two (three for the G:C pair) almost linear N-H . . . O and (or) N-H . . . N hydrogen bonds. The position of nitrogen bases paired by two such H-bonds in any crystal of nucleic acid component in polynucleotide complexes and in tRNA is close to the position in one of these minima. Besides, for each pair there are energy minima corresponding to the formation of a single N-H . . . O or N-H . . . N and one C-H . . . O or C-H . . . N hydrogen bond. The form of potential surface in the vicinity of minima has been characterized. The results of calculations agree with the experimental data and with more rigorous calculations based on quantum-mechanical approach.  相似文献   

4.
Interactions between copolypeptides containing Glu and Tyr residues and polynucleotides can be mediated through divalent metal ions such as Zn-2+ and Ci-2+. Circular dichroism studies show that the binding of metal ion - polypeptide complexes to poly(A) induces an unstacking of adenine bases. Fluorescence investigations demonstrate that Tyrosine - Adenine interactions result from the formation of ternary complexes polypeptide-Zn-2 plus-polynucleotide.  相似文献   

5.
Summary The deuteration of the tryptophan residues of hen egg white lysozyme, bovine-lactalbumin and bovine-lactoglobulin in d-TFA has been studied by PMR spectroscopy. It is found that short times of exposure to d-TFA allow selective deuteration at the C-2 position with only a small amount of deuteration at the C-5 position, as expected from studies on model peptides described in the previous paper. The proteins studied essentially regained their native structures after the treatment, except for broadening and shifting of the histidine resonances in the case of-lactalbumin. Selective deuteration at the tryptophan C-2 position was readily observed by difference spectroscopy of the denatured protein, but PMR difference spectra of the same proteins in benign solvents did not contain resonances from all of the exchanged protons. Some resonances could not be observed because of line broadening, which causes the resonances to fall below the limit of sensitivity of detection at 100 MHz. Deuteration by brief exposure to d-TFA should be useful for the identification of tryptophan resonances in the PMR spectra of native proteins.The deuteration of all the aromatic protons of tryptophan residues in proteins by immersion in d-TFA for 4 hours at room temperature was studied. This technique is unlikely to be of general use for the simplification of the aromatic region of the PMR spectra of native proteins because of the degradation of tryptophan residues which results from the acid treatment.An invited article.  相似文献   

6.
As a stacking model between nucleic acid bases and aromatic amino acids, the interaction on m3 CMP-tryptophan derivative has been studied by 1H-NMR and X-ray crystal analyses. From the comparative 1H-NMR experiments using CMP and m3CMP, it is suggested that the N(3)-protonation by methylation greatly strengthens the stacking interaction with tryptophan. Parallel alignment with a separation distance of 3.38A is shown by the X-ray analysis of m CMP-tryptamine complex. The stacking mode is very similar to those observed in the complexes of indole ring with m1A and m7G.  相似文献   

7.
Room temperature fluorescence and low-temperature phosphorescence studies of the association of p10, a basic low molecular weight single-stranded DNA binding protein isolated from murine leukemia viruses, point to the involvement of its single tryptophan residue in a close-range interaction with single-stranded polynucleotides. Optically detected triplet-state magnetic resonance (ODMR) techniques applied to the complex of p10 protein with the heavy atom derivatized polynucleotide poly(5-HgU) demonstrate the occurrence of stacking interactions of Trp35 with nucleic acid bases, thus agreeing with earlier reports that this residue is involved in the binding process [Karpel, R. L., Henderson, L. E., & Oroszlan, S. (1987) J. Biol. Chem. 262, 4961-4967].  相似文献   

8.
New experimental results concerning molecular interactions between the nitrogen bases of nucleic acids in the crystalline phase and in vacuo are reported. The temperature dependence of the evaporation rate is measured for solid species. The sensitivity of conventional methods of sublimation heat measurements was improved essentially using a quartz resonator serving as a precise sensor of evaporation rate. Sublimation heats were found for both canonical bases and a number of their derivatives. The in vacuo formation of base associates interacting through hydrogen bonds was observed with a field mass spectrometer. The dimer formation enthalpies, which are indicative of a stronger attraction in complementary pairs compared with noncomplementary ones, were derived from the temperature dependence of ionic currents. Hydrogen-bound complexes of more intricate associates (base trimers and aqueous molecules associates) were studied. The energy gain in the formation of trimers of identical molecules was shown to be larger (per base molecule) than that for dimers.  相似文献   

9.
Complex formation between the side chain of arginine and nucleic acid bases has been investigated by proton magnetic resonance in dimethylsulfoxide. Simultaneous formation of two hydrogen bonds leads to a selectivity of arginine interaction towards cytosine and guanine. A comparison is made of the interaction of arginine side chain with nucleic acid bases, phosphate and carboxylate anions. It is shown that interaction between carboxylate and arginine is stronger than between phosphate and arginine. These results are discussed with respect to the selective recognition of nucleic acid bases by arginine side chains and by the arginyl-glutamyl ion pair which could form in proteins interacting with nucleic acids.  相似文献   

10.
We have used optically detected magnetic resonance (ODMR) to characterize the degree of solvent availability of the tryptophan residues in lysozyme that are likely to be responsible for the observed phosphorescence. From the phosphorescence spectra, ODMR zero-field splittings (zfs), and ODMR line widths, we concur with the X-ray structure [Blake, C. C., Mair, G. A., North, A. C. T., Phillips, D. C., & Sarma, V. R. (1967) Proc. R. Soc. London, ser. B 167, 365-377] that Trp-62 behaves as an exposed residue and Trp-108 is buried. In addition, we present evidence that ODMR can be used in conjunction with conventional phosphorescence to evaluate the degree of order in the microenvironments of tryptophan in a protein containing several tryptophans. By the specific modification of residues Trp-62 and Trp-108, we have identified those portions of the ODMR lines in the native enzyme that are due to those specific residues. Barring major enzyme conformational changes in the vicinity of unmodified tryptophan residues when Trp-62 or Trp-108 are selectively modified, we find that Trp-108 dominates both the phosphorescence and the ODMR signals in native lysozyme. The results are discussed in view of previous fluorescence findings.  相似文献   

11.
A procedure is described to determine tryptophan residues in proteins using a tryptophan reagent, 2-hydroxy-5-nitrobenzyl bromide. The method involves the treatment of the unfolded protein with the reagent in 9 m urea at acid pH; incubation of the mixture at room temperature for 2 hr and the removal of the excess reagent by centrifugation and gel filtration. The amount of tryptophan in a protein is determined from the optical density of the labeled protein at 280 and 410 nm, and from the known optical density of 1 mg/ml of the protein at 280 nm and of the reagent at 280 and 410 nm. The efficacy of the method was tested with eight proteins whose tryptophan content is known.  相似文献   

12.
The results of a Monte Carlo simulation of the hydration of uracil and thymine molecules, their stacked dimers and hydrogen-bonded base pairs are presented. Simulations have been performed in a cluster approximation. The semiempirical atom-atom potential functions have been used (cluster consisting of 200 water molecules). It has been shown that the stacking interactions of uracil and thymine molecules in water arise mainly due to the increase in the water-water interaction during the transition from monomers to dimer. It has been found out that stacked base associates are more preferable than base pairs in water. This preference is mainly due to the energetically more favourable structure of water around the stack.  相似文献   

13.
14.
15.
Base stacking is one of the primary factors stabilizing nucleic acid structure. Yet, methods for locating stacking interactions in DNA and RNA are rare and methods for displaying stacking are rarer still. We present here simple, automated procedures to search nucleic acid molecules for base-base and base-oxygen stacking and to display these interactions graphically in a manner that readily conveys both the location and the quality of the interaction. The method makes no a priori assumptions about relative base positions when searching for stacking, nor does it rely on empirical energy functions. This is a distinct advantage for two reasons. First, the relative contributions of the forces stabilizing stacked bases are unknown. Second, the electrostatic and hydrophobic components of base stacking are both poorly defined by existing potential energy functions.  相似文献   

16.
17.
18.
Isopoly(S-carboxymethyl-L-cysteine) derivatives of nucleic acid bases were found to form stable complex with oligo-DNA in vitro. Fluorescent probed isopoly(S-carboxymethyl cysteine) derivatives of nucleic acid bases were prepared as antisense oligomers. The transfection of the oligomer into cells was carried out by HVJ-liposome method. Fluorescence was observed from the cells treated with HVJ-liposome including fluorescent probed oligomers.  相似文献   

19.
Formation of 3-nitrotyrosine by the reaction between reactive nitrogen species (RNS) and tyrosine residues in proteins has been analyzed extensively and it is used widely as a biomarker of pathophysiological and physiological conditions mediated by RNS. In contrast, few studies on the nitration of tryptophan have been reported. This review provides an overview of the studies on tryptophan modifications by RNS and points out the possible importance of its modification in pathophysiological and physiological conditions. Free tryptophan can be modified to several nitrated products (1-, 4-, 5-, 6-, and 7-), 1-N-nitroso product, and several oxidized products by reaction with various RNS, depending on the conditions used. Among them, 1-N-nitrosotryptophan and 6-nitrotryptophan (6-NO(2)Trp) have been found as the abundant products in the reaction with peroxynitrite, and 6-NO(2)Trp has been the most abundant product in the reaction with the peroxidase/hydrogen peroxide/nitrite systems. 6-NO(2)Trp has also been observed as the most abundant nitrated product of the reactions between peroxynitrite or myeloperoxidase/hydrogen peroxide/nitrite and tryptophan residues both in human Cu,Zn-superoxide dismutase and in bovine serum albumin, as well as the reaction of peroxynitrite with myoglobin and hemoglobin. Several oxidized products have also been identified in the modified Cu,Zn-SOD. However, no 1-N-nitrosotryptophan and 1-N-nitrotryptophan has been observed in the proteins reacted with peroxynitrite or the myeloperoxidase/H(2)O(2)/nitrite system. The modification of tryptophan residues in proteins may occur at a more limited number of sites in vivo than that of tyrosine residues, since tryptophan residues are more buried inside proteins and exist less frequently in proteins, generally. However, surface-exposed tryptophan residues tend to participate in the interaction with the other molecules, therefore the modification of those tryptophans may result in modulation of the specific interaction of proteins and enzymes with other molecules.  相似文献   

20.
Spectroscopic and photophysical properties of a Kemp's tricarboxylic acid derivative having an anthracene chromophore (I) upon recognition of 9-butyladenine (BA) in chloroform were studied in detail. Molecular recognition of BA by I via hydrogen-bonding and pi-pi stacking interactions were sensed successfully on the basis of absorption and fluorescence spectroscopies, by which the binding constant of the I:BA complex was determined to be 240 M(-1). The fluorescence quantum yield and lifetime of I in the absence of BA were 0.24 and 5.6 ns, respectively, while those in the presence of an enough amount of BA increased to 0.35 and 13 ns, respectively. These values demonstrated that the nonradiative decay rate constant of I decreased from 13.6 x 10(7) to 5.0 x 10(7) s(-1) upon binding with BA. Such changes in the photophysical properties of I before and after complexation with BA were discussed in terms of hydrogen-bonding and pi-pi stacking interactions between I and BA. In particular, intramolecular hydrogen-bonding between the amide and imide groups in was shown to play important roles in determining the photophysical characteristics of I before complexation, while intermolecular hydrogen-bonding between I and BA governed the excited-state properties of the I:BA complex. The change in the hydrodynamic diameter of I before and after complexation with BA was also discussed on the basis of the results by fluorescence dynamic anisotropy measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号