首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological response of cowpea ( Vigna sinensis L.) epicotyl explants to far‐red light (FR) and its interaction with gibberellins (GAs) have been investigated. The effect of FR and GA1 varied with the age of the seedlings from which the explants were made: for FR, it decreased progressively with age (though the sensitivity of the epicotyls to FR did not change significantly until at least day 11), whereas it remained essentially constant for applied GA1 between days 5 and 9 after sowing. This indicates that the loss of response to FR may be due to a decrease in endogenous GA levels in the epicotyl. For a range of GA1 and GA20 (0.01–1 µg explant−1), both hormones were more active in FR than in R irradiated epicotyls, suggesting that phytochrome may affect GA sensitivity besides GA metabolism. The location of the epicotyl region most sensitive to FR (between 5 and 20 mm below the apex) was different from that to GAs (the upper 10 mm). Nevertheless, FR extended the region responsive to applied GAs, even in paclobutrazol‐treated epicotyls where elongation was due entirely to exogenous GAs. This means that modulation of epicotyl elongation by phytochrome, that occurs in a zone different from though overlapping with the GA‐sensitive subapical zone, is also mediated by GAs. Growth in the most FR‐sensitive region of the epicotyl stimulated by FR or GA1 was due to cell elongation, and in the most GA‐sensitive region to both cell division and elongation. The effect of FR and GA1 was negated by colchicine, indicating that microtubules may be involved in the response to both factors.  相似文献   

2.
Plants of Poa pratensis cv. Holt initiate inflorescence primordia when exposed to short days (SD) and low temperature, but require a secondary induction by at least 4 long days (LD) for further inflorescence development and stem elongation. Single or double applications of 10 µg per plant of gibberellins A1, A3, A5 and 16,17‐dihydro A5 (DHGA5) induced inflorescence development in a high proportion of plants in SD, but only if the plants were detillered to a single stem. Exposure to 2 LD cycles did not cause heading and flowering alone but enhanced the effect of exogenous gibberellins (GAs), bringing flowering to 100%. GA5 and DHGA5 were less effective than GA1 and GA3 in SD, especially with double applications, but were more effective than GA1 and GA3 when given together with 2 LD. The GAs had differential effects on vegetative growth and flowering, GA5 and DHGA5 causing much less leaf and stem growth than the other two GAs. Marginal induction, whether by LD or GA application, resulted in a high proportion of spikelets with viviparous proliferation. Thus, whereas GAs are inhibitory to the primary induction by SD, they can replace secondary induction by LD when vegetative growth is limited.  相似文献   

3.
Endogenous gibberellins (GAs) in corms of Polianthes tuberosa L. (cv. Double) were isolated and identified by high performance liquid chromatography, bioassay and combined capillary gas chromatography-mass spectrometry (GC-MS). Gibberellins A1, A19, A20 and A53 were quantified at the vegetative, early floral initiation and flower development stages. The identification of 13-hydroxylated GAs indicates the presence of the early 13-hydroxylation pathway in P. tuberosa corms. An increase in GA1 and GA20, and a decrease in GA19 levels, coincided with the transition from the vegetative phase to the stages of early floral initiation and flower development. GA53 stayed at constant levels at the 3 different growth stages. The absence of GA1 in vegetative corms and its presence in corms at early floral initiation and flower development stages suggest that GA1 is a causal factor in inducing floral initiation in P. tuberosa . When GA1, GA3, GA4, GA20 and GA32 were applied to corms at the vegetative stage (plants about 5 cm in height), floral initiation was promoted by all of the GAs used, GA32 being the most active. In contrast with the other GAs, GA32 had no effect on stem elongation. Therefore, it is suggested that hydroxylated C-19 GAs play an important role in flower induction in P. tuberosa .  相似文献   

4.
We describe a new mutation, lrs , which reduces internode length in Pisum sativum L. The mutation appears to act by reducing both GA synthesis and the response to GA1. The levels of the 13‐hydroxylated GAs, GA53, GA44, GA19, GA20, GA1, and GA8 in the lrs mutant were greatly reduced compared with the wild‐type. The extent of the reduction in GA1 content in the apical tissues would, at least in part, account for the dwarf phenotype of the mutant. The reduced GA responsiveness of the new mutant was indicated by the inability of applied GA1 to remove the difference in elongation between lrs and LRS plants. The lrs mutant appears to be unique amongst internode length genotypes, possessing characteristics of both GA synthesis and GA response mutants.  相似文献   

5.
Chlorophyll loss in the leaves of cut flowering branches of Alstroemeria pelegrina L. cv. Stajello, placed in water in darkness at 20°, was inhibited by irradiation with red light and by the inclusion of gibberellic acid (GA3) in the water. The effects of red light were abolished when it was followed by far-red light. Effects of GA3 and red light were additive over a range of GA3 concentrations (0. 01–1 μ M ). Chlorophyll breakdown was increased by the inclusion of AMO-1618, ancymidol, or tetcyclasis in the water. The effect of these inhibitors of gibberellin synthesis was fully reversed by GA3. The inhibition of chlorophyll breakdown by red light was absent when AMO-1618, ancymidol or tetcyclasis were included in the water. The results indicate that leaf yellowing is controlled by endogenous gibberellins and that the effect of phytochrome is mediated by gibberellin synthesis.  相似文献   

6.
Fifteen different gibberellins (GA's) were tested for their ability to induce elongation growth under short day conditions in seedlings of Salix pentandra L. GA's were applied either to the apex or they were injected into a mature leaf. GA3 was highly active and also GA4+7 and GA4 showed high activity. GA1, GA2, GA5, GA9, GA13, GA20, GA36 and GA47 showed moderate activity. GA16, GA17, GA27 and GA41 exhibited low or no activity in doses up to 10 μg per plant. In general, a better growth response was obtained with an application to the apex than with an injection into the leaf.  相似文献   

7.
The functioning of the photosynthetic apparatus during leaf senescence was investigated in alstroemeria cut flowers by a combination of gas-exchange measurements and analysis of in vivo chlorophyll fluorescence. Chlorophyll loss in leaves of alstroemeria cut flowers is delayed by light and by a treatment of the cut flowers with gibberellic acid (GA3). The maximal photosynthesis of the leaves was approximately 6 μmol CO2 m−2 s−1 at I 350 μmol m−2 s−1 (PAR) which is relatively low for intact C3 leaves. Qualitatively the gas-exchange rates followed the decline in chlorophyll content for the various treatments, i.e. light and GA3-treatment delayed the decline in photosynthetic rates. However, when chlorophyll loss could not yet be observed in the leaves, photosynthetic rates were already strongly decreased. In vivo fluorescence measurements revealed that the decrease in CO2 uptake is (partly) due to a decreased electron flow through photosystem II. Furthermore, analysis of the fluorescence data showed a high nonphotochemical quenching under all experimental conditions, indicating that the consumption of reducing power in the Calvin cycle is very low. The chlorophyll, remaining after 9 days incubation of leaves with GA3 in the dark should be considered as a 'cosmetic' pigment without any function in the supply of assimilates to the flowers.  相似文献   

8.
Short photoperiod induces growth cessation in seedlings of Norway spruce ( Picea abies (L.] Karst.). Application of different gibberellins (GAS) to seedlings growing under a short photoperiod show that GA9 and GA20 can not induce growth. In contrast application of GA, and GA4 induced shoot elongation. The results indicate that 3β-hydroxylation of GA9 to GA4 and of GA20 to GA1 is under photoperiodic control. To confirm that conclusion, both qualitative and quantitative analyses of endogenous GAs were performed. GA1, GA3, GA4, GA7, GA9, GA12, GA15, GA15, GA20, GA29, GA34 and GA51 were identified by combined gas chromatography-mass spectrometry in shoots of Norway spruce seedlings. The effect of photoperiod on GA levels was determined by using deuterated and 14C-labelled GAs as intermal standards. In short days, the amounts of GA9, GA4 and GA1 are less than in plants grown in continuous light. There is no significant difference in the amounts of GA3, GA12, and GA20 between the different photoperiods. The lack of accumulation of GA9 and GA20 under short days is discussed.  相似文献   

9.
The regulation by phytochrome of stem elongation in light-grown plants depends on gibberellins (GAs). To investigate whether this is mediated by a change in GA metabolism, the effect of the GA biosynthesis inhibitor LAB 198 999 (an acylcyclohexadione derivative) on the end-of-day far-red (FR) response in cowpea ( Vigna sinensis L.) epicotyl explants has been investigated. Growth of epicotyl explants of light-grown seedlings was enhanced when treated with far-red light before incubation in the dark (end-of-day FR effect). Low doses of LAB 198 999 (0.05 and 0.5 μg explant−1) reduced the effect of FR, whereas 5 to 50 μg explant−1 stimulated elongation of both red light (R)- and FR-treated epicotyl explants while nullifying the differences between R and FR treatments. In paclobutrazol-treated epicotyl explants, FR enhanced the response to applied GA1 and GA20, whereas LAB 198 999 increased the activity of GA1 and decreased that of GA20, [3H]Gibberellin A1, injected into the basal part of the epicotyl, was transported and metabolized mainly to [3H]GA8 in the apical 20 mm of the epicotyl. The conversion of [3H]GA1 to [3H]GA8 was dramatically reduced by both end-of-day FR treatments and LAB 198 999 applications. In addition, both treatments enhanced epicotyl elongation. It is proposed that the regulation of cowpea epicotyl growth by phytocrome is mediated, at least partially, by modifying GA1 degradation.  相似文献   

10.
Effects of gibberellins A1, A4/7, A9, A19 and A20 and growth retardants were studied on shoot elongation in seedlings of Salix pentandra L. The growth-retarding effects of CCC and ancymidol were antagonized by all the gibberellins tested. The novel plant growth regulator prohexadione (free acid of BX-112), which is suggested to block 3β-hydroxylation of gibberellins, effectively prevented shoot elongation in seedlings grown under long photoperiod. Initiation of new leaves was only slightly reduced. GA1, but not GA19 and GA20, was active in overcoming the inhibition of stem elongation of seedlings, treated with prohexadione, GA19, GA20 and GA1 are native in S. pentandra , and the results are compatible with the hypothesis that GA1 is active per se in shoot elongation, and that the effect of GA19 and GA20 is dependent on their conversion to GA1.
A mixture of GA4 and GA7 was as active as GA1 in promoting shoot elongation in seedlings treated with prohexadione, while GA9 showed slight activity only when applied at high doses.  相似文献   

11.
The metabolism of GA10 is thought to be under photoperiodic control in the woody plant Salix pentandra . However, in a recent study using 16,17-[3H2]GA19 as a mimic of Ga10, no effect of photoperiod was found on its metabolism to 16,17-dihydro-GA20 and 16,17-dihydro-GA1. To investigate if this was due to differential action of exogenous 16,17-dihydro-GAs and GAs, the effects of the 16,17-dihydro-derivatives of the gibberellins GA19, GA1, and GA1 as compared with their parent GAs, on shoot elongation in seedlings of S. pentandra were studied. 16,17-Dihydro-GA19, and -GA20 were both almost inactive, while 16,17-dihydro-GA1 induced some shoot elongation in seedlings treated with ancymidol as well as under short days. GA19, GA20 and GA1 were all able to counteract the inhibitory effect of ancymidol under continuous light, while inhibition induced by a 12-h photoperiod was antagonised only by GA20 and GA1. Thus, the growth-stimulating activity of the tested GAs is significantly reduced by 16,17-dihydro derivatisation, but the derivatives do not inhibit stem elongation in S, pentandra , as has been found in monocotyledons.  相似文献   

12.
Halińska, A. and Lewak, St. 1987. Free and conjugated gibberellins in dormancy and germination of apple seeds.
The presence of gibberellin A4 (GA4) was confirmed in partly stratified seeds of apple ( Malus domestica Borb., cv. Antonówka) by mass spectrometry of the methyl ester. Levels of free and conjugated gibberellins A4+7 and A9 changed during drying of mature seeds, during cold and warm stratification, as well as during germination of dormant and non-dormant embryos. The temporary rise in GA4+7 during cold stratification and during the culture of dormant embryos as well as the lack of it under conditions of warm stratification, allowed us to postulate a role for GA4+7 in the removal of dormancy. In addition, GA9 was absent in dormant embryos and increased during cold stratification and during the culture of non-dormant embryos. This suggests the involvement of GA9, in induction of normal development of the seedling. The equivalence between changes in free and conjugated GAs suggests that formation and hydrolysis of conjugates are involved in the control of the physiologically active levels of free GA4+7 and GA9.  相似文献   

13.
Endogenous gibberellins (GAs) were extracted and purified from apical buds of Eucalyptus nitens (Deane and Maid.) Maid. and the cambial region of E. globulus (Labill.). then analysed by capillary gas chromatography-mass spectrometry. GA1 GA19 GA20 and GA29 were identified by full scan mass spectra. Kovats retention indices and high resolution selected ion monitoring. Using deuterated internal standards. GA1. GA19. GA20 and putative GA29 and GA53 were quantified in the apical buds, while GA4. GA8. GA9 and GA44 were shown to be either absent or present at very low levels. From the cambial region. GA1 and GA20 were quantified at levels of 0.30 ng (g fresh weight)-1 and 8.8 ng (g fresh weight)-1 respectively. These data suggest that the early 13-hydroxylation pathway is the dominant pathway for GA biosynthesis in Eucalyptus .  相似文献   

14.
The role of gibberellins (GAs) in the induction of parthenocarpic fruit-set and growth by the pat-3/pat-4 genetic system in tomato ( Lycopersicon esculentum Mill.) was investigated using wild type (WT; Cuarenteno) and a near-isogenic line derived from the German line RP75/59 (the source of pat-3/pat-4 parthenocarpy). Unpollinated WT ovaries degenerated but GA3 application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of pat-3/pat-4 fruits, which occurs in the absence of pollination and hormone treatment, was not affected by applied GA3. Unpollinated pat-3/pat-4 fruit growth was negated by paclobutrazol, an inhibitor of ent -kaurene oxidase, and this inhibitory effect was negated by GA3. The quantification of the main GAs of the early 13-hydroxylation pathway (GA1, GA8, GA19, GA20, GA29 and GA44) in unpollinated ovaries at 3 developmental stages (flower bud, FB; pre-anthesis, PR; and anthesis, AN), by gas chromatography-selected ion monitoring, showed that the concentration of most of them was higher in pat-3/pat-4 than in WT ovaries at PR and AN stages. The concentration of GA1, suggested previously to be the active GA in tomate, was 2–4 times higher. Unpollinated pat-3/pat-4 ovaries at FB, PR and AN stages also contained relatively high amounts (5–12 ng g−1) of GA3, a GA found at less than 0.5 ng g−1 in WT ovaries. It is concluded that the mutations pat-3/pat-4 may induce natural facultative parthenocarpy capacity in tomato by increasing the concentration of GA1 and GA3 in the ovaries before pollination.  相似文献   

15.
It has been shown previously that gibberellins (GAs) mediate the phytochrome (Phy) control of cowpea ( Vigna sinensis L.) epicotyl elongation induced by end-of-day (EOD)-far-red light (FR). In the present work, the EOD-FR effect on GA metabolism and GA levels in cowpea has been investigated. GA1, GA8, GA19 and GA20 were identified in epicotyls, and GA1, GA19, GA20 and GA29-catabolite in leaves of 6-day-old cowpea seedlings. The content of GA1 in the epicotyl paralleled the decrease of its growth rate, supporting the hypothesis that this is the GA bioactive in controlling cowpea epicotyl elongation. FR enhanced both the amount of [3H]GA1 in the epicotyl produced from applied [3H]GA20, and that of applied [3H]GA1 that remained unmetabolized in epicotyl explants, suggesting that Phy may regulate the inactivation of GA1. In agreement with this effect of light on GA1 metabolism, the contents of GA1 in the epicotyl remained higher in FR-treated than in R-treated explants. Moreover, in intact seedlings EOD-FR treatment increased both epicotyl elongation and GA1 content in the responsive epicotyl, whereas it was not altered in the leaves. These results show, for the first time, that photostable Phys modulate the stem elongation in light-grown plants by locally controlling the GA1 levels through regulation of its inactivation.  相似文献   

16.
Three-week-old shoots of the spring oilseed rape cv. Petranova ( Brassica napus L. ssp. napus ) were found by combined gas chromatography-mass spectrometry to contain GA1, GA8, GA15, GA17, GA19, GA20, GA24, GA29, 3-epi-GA1 and a previously uncharacterised C19 dicarboxylic acid that is probably structurally related to GA24. Shoots of the winter cultivar Belinda, harvested at the early flowering stage, contained the same GAs with the exception of the C19 dicarboxylic acid and, in addition, GA34 and GA51 were identified. All material contained higher levels of GA20 than of GA1; the ratio of GA1 to GA20 was highest in shoots containing the largest proportion of young immature tissues. Soil treatment of cv. Petranova seedlings with the growth retardant BAS 111¨W [1-phenoxy-5,5-dimethyl-3-(1,2,4-triazol-1-yl)-hexan-4-ol] caused 80% reduction in height 18 days after treatment and the levels of all GAs were 20% or less that of control plants. Foliar treatment at the same dosage reduced height by 50% and caused an 85% or greater reduction in the concentrations of the GA1 precursors GA20, GA19 and GA44. However, the levels of GA1, GA8 and GA29 were affected to a much smaller extent. Foliar application of BAS 111¨W to cv. Belinda 1 month after sowing resulted in only a 20% height reduction at flowering, but no uniform decrease in the concentrations of endogenous GAs at this stage.  相似文献   

17.
Antheridia were induced by exogenously applied GA3 at concentrations between 10−6 and 3 × 10−4 M in very young filamentous protonemata of Lygodium japonicum grown in darkness; the longer the dark preculture of protonemata, the lower was the sensitivity of the protonemata to GA3. Antheridial initials were discernible after 36 hr of GA3 treatment in the most sensitive protonemata, and the timing of antheridial initiation was delayed with increasing protonemal age.
This quantitative response of the protonemata provided the basis for a new method of assaying gibberellins in terms of the degree of antheridial formation. According to this method, all the gibberellins tested and one of their precursors were active in inducing antheridia in the protonemata, and the activity spectrum of the gibberellins was as follows: GA7>GA4>GA9>GA3>GA5>GA1>GA8.
The amounts of antheridiogen contained in conditioned media were measured by the present bioassay. A semi-logarithmic relation was shown between the percentage of antheridial formation and the concentration of conditioned medium within a certain dilution range. The amounts of antheridiogen secreted by the prothallia were quantitatively compared by transferring samples onto fresh media for a short period of time.  相似文献   

18.
Gibberellin levels and cold-induced floral stalk elongation in tulip   总被引:2,自引:0,他引:2  
To investigate the role of gibberellins (GAs) in the cold requirement of tulip ( Tulipa gesneriana L. cv. Apeldoorn), bulbs were dry-stored at 5°C or at 17°C for 12 weeks prior to planting at 20°C. Only precooled bulbs showed rapid sprout growth and developed a full-grown flower. Endogenous GA levels were measured in sprouts and basal plates at the time of planting and in the second week after planting, by combined gas chromatography-mass spectrometry using deuterated internal standards. GA4 was the major gibberellin. while GA1, GA9 and GA34 were present in lower amounts. At the time of planting, sprouts from non-cooled bulbs contained significantly more GA4 and GA1, per sprout than those from precooled bulbs. Hence, there is no direct correlation between rapid sprout growth after planting and high GA levels at planting. In the second week after planting, floral stalks of precooled bulbs contained 2 to 3 times more GA4 and its metabolite GA34 per floral stalk and per g fresh weight than those of non-cooled bulbs. The results are discussed with regard to the role of gibberellins in the cold-induced floral stalk elongation of tulip.  相似文献   

19.
Seeds of Kalanchoë blossfeldiana Poelln. cv. Feucrblüte, incubated on gibberellic acid, become very light-sensitive through a synergism between the far-red absorbing form of phytochrome and the growth substance, which results in high physiological activity of short far-red (FR) exposures. On 2 × 10-3 M gibberellic acid (GA3), one saturating FR pulse is somewhat more effective than one saturating red light (R) irradiation. Fluence-response curves for R and FR confirm this observation. At lower GA3 concentrations, this difference disappears and the effects of one saturating R and FR pulse decrease in an identical way with the GA3 concentration. When two saturating irradiations, separated by 24 h are given, the effect of FR falls off faster than that of R at low GA3 concentrations. Consequently, the second irradiation must have a different impact in comparison with the first one. Of the other growth substances tested, only a mixture of gibberellins A4 and A7 had an analogous, still more pronounced effect than GA3. Abscisic acid (ABA) inhibits the phytochrome-mediated germination of Kalanchoë , both in the absence and presence of GA3. An antagonism between ABA and GA3 was demonstrated.  相似文献   

20.
A new system has been developed to study hormone-directed transport in intact plants during parthenocarpic fruit set induced by gibberellins. Gibberellic acid (GA3) and gibberellin A1 (GA1) applied to unpollinated ovaries of pea ( Pisum sativum L. cv. Alaska) promoted sucrose transport from the leaf to the site of hormone application. In vivo experiments showed an early (30 min) accumulation of [14C]-sucrose in ovaries of pea stimulated by gibberellins. This activation of sucrose transport appears to be mediated by gibberellins (GA1, GA3), increasing both loading of phloem with sucrose in the leaf (source) and sucrose unloading in the ovary (sink). The ability of pea tissue segments to take up sucrose in vitro was not affected by the hormonal treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号