共查询到20条相似文献,搜索用时 0 毫秒
1.
Ivo F. Sbalzarini 《BioEssays : news and reviews in molecular, cellular and developmental biology》2013,35(5):482-490
This essay provides an introduction to the terminology, concepts, methods, and challenges of image‐based modeling in biology. Image‐based modeling and simulation aims at using systematic, quantitative image data to build predictive models of biological systems that can be simulated with a computer. This allows one to disentangle molecular mechanisms from effects of shape and geometry. Questions like “what is the functional role of shape” or “how are biological shapes generated and regulated” can be addressed in the framework of image‐based systems biology. The combination of image quantification, model building, and computer simulation is illustrated here using the example of diffusion in the endoplasmic reticulum. 相似文献
2.
3.
David-Emlyn Parfitt Michael M. Shen 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1657)
To date, many regulatory genes and signalling events coordinating mammalian development from blastocyst to gastrulation stages have been identified by mutational analyses and reverse-genetic approaches, typically on a gene-by-gene basis. More recent studies have applied bioinformatic approaches to generate regulatory network models of gene interactions on a genome-wide scale. Such models have provided insights into the gene networks regulating pluripotency in embryonic and epiblast stem cells, as well as cell-lineage determination in vivo. Here, we review how regulatory networks constructed for different stem cell types relate to corresponding networks in vivo and provide insights into understanding the molecular regulation of the blastocyst–gastrula transition. 相似文献
4.
5.
Zhi-Ping Liu 《Quantitative Biology.》2018,6(2):113
Background: More and more high-throughput datasets are available from multiple levels of measuring gene regulations. The reverse engineering of gene regulatory networks from these data offers a valuable research paradigm to decipher regulatory mechanisms. So far, numerous methods have been developed for reconstructing gene regulatory networks. Results: In this paper, we provide a review of bioinformatics methods for inferring gene regulatory network from omics data. To achieve the precision reconstruction of gene regulatory networks, an intuitive alternative is to integrate these available resources in a rational framework. We also provide computational perspectives in the endeavors of inferring gene regulatory networks from heterogeneous data. We highlight the importance of multi-omics data integration with prior knowledge in gene regulatory network inferences. Conclusions: We provide computational perspectives of inferring gene regulatory networks from multiple omics data and present theoretical analyses of existing challenges and possible solutions. We emphasize on prior knowledge and data integration in network inferences owing to their abilities of identifying regulatory causality. 相似文献
6.
Logical modelling of regulatory networks with GINsim 2.3 总被引:1,自引:0,他引:1
Many important problems in cell biology require the consideration of dense nonlinear interactions between functional modules. The requirement of computer simulation for the understanding of cellular processes is now widely accepted, and a variety of modelling frameworks have been designed to meet this need. Here, we present a novel public release of the Gene Interaction Network simulation suite (GINsim), a software designed for the qualitative modelling and analysis of regulatory networks. The main functionalities of GINsim are illustrated through the analysis of a logical model for the core network controlling the fission yeast cell cycle. The last public release of GINsim (version 2.3), as well as development versions, can be downloaded from the dedicated website (http://gin.univ-mrs.fr/GINsim/), which further includes a model library, along with detailed tutorial and user manual. 相似文献
7.
8.
9.
The developments in biochemistry and molecular biology over the past 30 years have produced an impressive parts list of cellular components. It has become increasingly clear that we need to understand how components come together to form systems. One area where this approach has been growing is cell signalling research. Here, instead of focusing on individual or small groups of signalling proteins, researchers are now using a more holistic perspective. This approach attempts to view how many components are working together in concert to process information and to orchestrate cellular phenotypic changes. Additionally, the advancements in experimental techniques to measure and visualize many cellular components at once gradually grow in diversity and accuracy. The multivariate data, produced by experiments, introduce new and exciting challenges for computational biologists, who develop models of cellular systems made up of interacting cellular components. The integration of high-throughput experimental results and information from legacy literature is expected to produce computational models that would rapidly enhance our understanding of the detail workings of mammalian cells. 相似文献
10.
11.
12.
Kauffman S 《Journal of theoretical biology》2004,230(4):22-590
Understanding the genetic regulatory network comprising genes, RNA, proteins and the network connections and dynamical control rules among them, is a major task of contemporary systems biology. I focus here on the use of the ensemble approach to find one or more well-defined ensembles of model networks whose statistical features match those of real cells and organisms. Such ensembles should help explain and predict features of real cells and organisms. More precisely, an ensemble of model networks is defined by constraints on the "wiring diagram" of regulatory interactions, and the "rules" governing the dynamical behavior of regulated components of the network. The ensemble consists of all networks consistent with those constraints. Here I discuss ensembles of random Boolean networks, scale free Boolean networks, "medusa" Boolean networks, continuous variable networks, and others. For each ensemble, M statistical features, such as the size distribution of avalanches in gene activity changes unleashed by transiently altering the activity of a single gene, the distribution in distances between gene activities on different cell types, and others, are measured. This creates an M-dimensional space, where each ensemble corresponds to a cluster of points or distributions. Using current and future experimental techniques, such as gene arrays, these M properties are to be measured for real cells and organisms, again yielding a cluster of points or distributions in the M-dimensional space. The procedure then finds ensembles close to those of real cells and organisms, and hill climbs to attempt to match the observed M features. Thus obtains one or more ensembles that should predict and explain many features of the regulatory networks in cells and organisms. 相似文献
13.
14.
15.
Gene network analysis requires computationally based models which represent the functional architecture of regulatory interactions, and which provide directly testable predictions. The type of model that is useful is constrained by the particular features of developmentally active cis-regulatory systems. These systems function by processing diverse regulatory inputs, generating novel regulatory outputs. A computational model which explicitly accommodates this basic concept was developed earlier for the cis-regulatory system of the endo16 gene of the sea urchin. This model represents the genetically mandated logic functions that the system executes, but also shows how time-varying kinetic inputs are processed in different circumstances into particular kinetic outputs. The same basic design features can be utilized to construct models that connect the large number of cis-regulatory elements constituting developmental gene networks. The ultimate aim of the network models discussed here is to represent the regulatory relationships among the genomic control systems of the genes in the network, and to state their functional meaning. The target site sequences of the cis-regulatory elements of these genes constitute the physical basis of the network architecture. Useful models for developmental regulatory networks must represent the genetic logic by which the system operates, but must also be capable of explaining the real time dynamics of cis-regulatory response as kinetic input and output data become available. Most importantly, however, such models must display in a direct and transparent manner fundamental network design features such as intra- and intercellular feedback circuitry; the sources of parallel inputs into each cis-regulatory element; gene battery organization; and use of repressive spatial inputs in specification and boundary formation. Successful network models lead to direct tests of key architectural features by targeted cis-regulatory analysis. 相似文献
16.
The availability and utility of genome‐scale metabolic reconstructions have exploded since the first genome‐scale reconstruction was published a decade ago. Reconstructions have now been built for a wide variety of organisms, and have been used toward five major ends: (1) contextualization of high‐throughput data, (2) guidance of metabolic engineering, (3) directing hypothesis‐driven discovery, (4) interrogation of multi‐species relationships, and (5) network property discovery. In this review, we examine the many uses and future directions of genome‐scale metabolic reconstructions, and we highlight trends and opportunities in the field that will make the greatest impact on many fields of biology. 相似文献
17.
18.
在生命体内,基因以及其它分子间相互作用形成复杂调控网络,生命过程都是以调控网络的形式存在,如从代谢通路网络到转录调控网络,从信号转导网络到蛋白质相互作用网络等等。因此,网络现象是生命现象的复杂本质和主要特征。本文系统地介绍了基于表达谱数据构建基因调控网络的布尔网络模型,线性模型,微分方程模型和贝叶斯网络模型,并对各种网络构建模型进行了深入的分析和总结。同时,文章从基因组序列信息、蛋白质相互作用信息和生物医学文献信息等方面讨论了基因调控网络方面构建的研究,这对从系统生物学水平揭示生命复杂机制具有重要的参考价值。 相似文献
19.
Mathematical modeling often helps to provide a systems perspective on gene regulatory networks. In particular, qualitative approaches are useful when detailed kinetic information is lacking. Multiple methods have been developed that implement qualitative information in different ways, e.g., in purely discrete or hybrid discrete/continuous models. In this paper, we compare the discrete asynchronous logical modeling formalism for gene regulatory networks due to R. Thomas with piecewise affine differential equation models. We provide a local characterization of the qualitative dynamics of a piecewise affine differential equation model using the discrete dynamics of a corresponding Thomas model. Based on this result, we investigate the consistency of higher-level dynamical properties such as attractor characteristics and reachability. We show that although the two approaches are based on equivalent information, the resulting qualitative dynamics are different. In particular, the dynamics of the piecewise affine differential equation model is not a simple refinement of the dynamics of the Thomas model 相似文献
20.
Nicholas Geard Kai Willadsen 《Birth defects research. Part C, Embryo today : reviews》2009,87(2):131-142
The network of interacting regulatory signals within a cell comprises one of the most complex and powerful computational systems in biology. Gene regulatory networks (GRNs) play a key role in transforming the information encoded in a genome into morphological form. To achieve this feat, GRNs must respond to and integrate environmental signals with their internal dynamics in a robust and coordinated fashion. The highly dynamic nature of this process lends itself to interpretation and analysis in the language of dynamical models. Modeling provides a means of systematically untangling the complicated structure of GRNs, a framework within which to simulate the behavior of reconstructed systems and, in some cases, suites of analytic tools for exploring that behavior and its implications. This review provides a general background to the idea of treating a regulatory network as a dynamical system, and describes a variety of different approaches that have been taken to the dynamical modeling of GRNs. Birth Defects Research (Part C) 87:131–142, 2009. © 2009 Wiley‐Liss, Inc. 相似文献