首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
KinI kinesins are important in regulating the complex dynamics of the microtubule cytoskeleton. They are unusual in that they depolymerize, rather than move along microtubules. To determine the attributes of KinIs that distinguish them from translocating kinesins, we examined the ATPase activity, microtubule affinity, and three-dimensional microtubule-bound structure of a minimal KinI motor domain. Together, the kinetic, affinity, and structural data lead to the conclusion that on binding to the microtubule lattice, KinIs release ADP and enter a stable, low-affinity, regulated state, from which they do not readily progress through the ATPase cycle. This state may favor detachment, or diffusion of the KinI to its site of action, the microtubule ends. Unlike conventional translocating kinesins, which are microtubule lattice-stimulated ATPases, it seems that with KinIs, nucleotide-mediated modulation of tubulin affinity is only possible when it is coupled to protofilament deformation. This provides an elegant mechanistic basis for their unique depolymerizing activity.  相似文献   

2.
    
Atomic-resolution structures have had a tremendous impact on modern biological science. Much useful information also has been gleaned by merging and correlating atomic-resolution structural details with lower-resolution (15–40 Å), three-dimensional (3D) reconstructions computed from images recorded with cryo-transmission electron microscopy (cryoTEM) procedures. One way to merge these structures involves reducing the resolution of an atomic model to a level comparable to a cryoTEM reconstruction. A low-resolution density map can be derived from an atomic-resolution structure by retrieving a set of atomic coordinates editing the coordinate file, computing structure factors from the model coordinates, and computing the inverse Fourier transform of the structure factors. This method is a useful tool for structural studies primarily in combination with 3D cryoTEM reconstructions. It has been used to assess the quality of 3D reconstructions, to determine corrections for the phase-contrast transfer function of the transmission electron microscope, to calibrate the dimensions and handedness of 3D reconstructions, to produce difference maps, to model features in macromolecules or macromolecular complexes, and to generate models to initiate model-based determination of particle orientation and origin parameters for 3D reconstruction.  相似文献   

3.
4.
蛋白质生物合成过程的终止是由于第一类肽链释放因子识别终止密码子,并导致肽酰-tRNA酯键水解,释放出新合成的多肽链.近期,通过冷冻电镜、结晶学、核磁共振、分子动力学和生物化学等方面的研究,使第一类肽链释放因子的结构与功能逐渐清晰.对近期的研究进行了分析和整理.  相似文献   

5.
《Cell》2023,186(16):3350-3367.e19
  1. Download : Download high-res image (207KB)
  2. Download : Download full-size image
  相似文献   

6.
Three-dimensional cryomaps have been reconstructed for tRNA-ribosome complexes in pre- and posttranslocational states at 17-A resolution. The positions of tRNAs in the A and P sites in the pretranslocational complexes and in the P and E sites in the posttranslocational complexes have been determined. Of these, the P-site tRNA position is the same as seen earlier in the initiation-like fMet-tRNA(f)(Met)-ribosome complex, where it was visualized with high accuracy. Now, the positions of the A- and E-site tRNAs are determined with similar accuracy. The positions of the CCA end of the tRNAs at the A site are different before and after peptide bond formation. The relative positions of anticodons of P- and E-site tRNAs in the posttranslocational state are such that a codon-anticodon interaction at the E site appears feasible.  相似文献   

7.
    
Translation accuracy is one of the most critical factors for protein synthesis. It is regulated by the ribosome and its dynamic behavior, along with translation factors that direct ribosome rearrangements to make translation a uniform process. Earlier structural studies of the ribosome complex with arrested translation factors laid the foundation for an understanding of ribosome dynamics and the translation process as such. Recent technological advances in time-resolved and ensemble cryo-EM have made it possible to study translation in real time at high resolution. These methods provided a detailed view of translation in bacteria for all three phases: initiation, elongation, and termination. In this review, we focus on translation factors (in some cases GTP activation) and their ability to monitor and respond to ribosome organization to enable efficient and accurate translation. This article is categorized under:
  • Translation > Ribosome Structure/Function
  • Translation > Mechanisms
  相似文献   

8.
    
  1. Download : Download high-res image (195KB)
  2. Download : Download full-size image
  相似文献   

9.
Since the foundation for the three-dimensional image reconstruction of helical objects from electron micrographs was laid more than 30 years ago, there have been sustained developments in specimen preparation, data acquisition, image analysis, and interpretation of results. However, the boxing of filaments in large numbers of images--one of the critical steps toward the reconstruction at high resolution--is still constrained by manual processing even though interactive interfaces have been built to aid the tedious and sometimes inaccurate boxing process. This article describes an accurate approach for automated detection of filamentous structures in low-contrast images acquired in defocus pairs using cryoelectron microscopy. The performance of the approach has been evaluated across various magnifications and at a series of defocus values using tobacco mosaic virus (TMV) preserved in vitreous ice as a test specimen. By integrating the proposed approach into our automated data acquisition and reconstruction system, we are now able to generate a three-dimensional map of TMV to approximately 10-A resolution within 24 h of inserting the specimen grid into the microscope.  相似文献   

10.
Protein degradation in the 20S proteasome is regulated in eukaryotes by the 19S ATPase complex and in archaea by the homologous PAN ATPase ring complex. Subunits of these hexameric ATPases contain on their C‐termini a conserved hydrophobic‐tyrosine‐X (HbYX) motif that docks into pockets in the 20S to stimulate the opening of a gated substrate entry channel. Here, we report the crystal structure of the archaeal 20S proteasome in complex with the C‐terminus of the archaeal proteasome regulatory ATPase, PAN. This structure defines the detailed interactions between the critical C‐terminal HbYX motif and the 20S α‐subunits and indicates that the intersubunit pocket in the 20S undergoes an induced‐fit conformational change on binding of the HbYX motif. This structure together with related mutagenesis data suggest how in eukaryotes certain proteasomal ATPases bind to specific pockets in an asymmetrical manner to regulate gate opening.  相似文献   

11.
    
The actin filament severing and capping protein gelsolin plays an important role in modulation of actin filament dynamics by influencing the number of actin filament ends. During apoptosis, gelsolin becomes constitutively active due to cleavage by caspase-3. In non-apoptotic cells gelsolin is activated by the binding of Ca2+. This activated form of gelsolin binds to, but is not a folding substrate of the molecular chaperone CCT/TRiC. Here we demonstrate that in vitro, gelsolin is protected from cleavage by caspase-3 in the presence of CCT. Cryoelectron microscopy and single particle 3D reconstruction of the CCT:gelsolin complex reveals that gelsolin is located in the interior of the chaperonin cavity, with a placement distinct from that of the obligate CCT folding substrates actin and tubulin. In cultured mouse melanoma B16F1 cells, gelsolin co-localises with CCT upon stimulation of actin dynamics at peripheral regions during lamellipodia formation. These data indicate that localised sequestration of gelsolin by CCT may provide spatial control of actin filament dynamics.  相似文献   

12.
A statistical method for determining low-resolution 3-D reconstructions of virus particles from cryoelectron microscope images by an ab initio algorithm is described. The method begins with a novel linear reconstruction method that generates a spherically symmetric reconstruction, which is followed by a nonlinear reconstruction method implementing an expectation-maximization procedure using the spherically symmetric reconstruction as an initial condition and resulting in a reconstruction with icosahedral symmetry. An important characteristic of the complete method is that very little need be known about the particle before the reconstruction is computed, in particular, only the type of symmetry and inner and outer radii. The method is demonstrated on synthetic cowpea mosaic virus data, and its robustness to 5% errors in the contrast transfer function, 5% errors in the location of the center of the particles in the images, and 5% distortion in the 3-D structure from which the images are derived is demonstrated numerically.  相似文献   

13.
    
  1. Download : Download high-res image (201KB)
  2. Download : Download full-size image
  相似文献   

14.
    
We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane‐associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo‐electron microscopy (cryo‐EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ~20 nm inner diameter and a few microns in length, that self‐assemble in aqueous solutions. The lipid nanodisks (NDs) are self‐assembled discoid lipid bilayers of ~10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane‐associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane‐bound coagulation factor VIII in vitro for structure determination by cryo‐EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three‐dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane‐associated proteins and complexes for structural studies by cryo‐EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane‐associated proteins, such as the coagulation factors, at a close to physiological environment. Proteins 2014; 82:2902–2909. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
16.
We describe the cryo-electron microscopy structure of bacteriophage MS2 bound to its receptor, the bacterial F-pilus. The virus contacts the pilus at a capsid 5-fold vertex, thus locating the surface-accessible portion of the single copy of the pilin-binding maturation protein present in virions. This arrangement allows a 5-fold averaged map to be calculated, showing for the first time in any virus-receptor complex the nonuniform distribution of RNA within the capsid. Strikingly, at the vertex that contacts the pilus, a rod of density that may include contributions from both genome and maturation protein sits above a channel that goes through the capsid to the outside. This density is reminiscent of the DNA density observed in the exit channel of double-stranded DNA phages, suggesting that the RNA-maturation protein complex is poised to leave the capsid as the first step of the infection process.  相似文献   

17.
18.
Toxoplasma gondii is an obligatory intracellular parasite, an important human pathogen, and a convenient laboratory model for many other human and veterinary pathogens in the phylum Apicomplexa, such as Plasmodium, Eimeria, and Cryptosporidia. 22 subpellicular microtubules form a scaffold that defines the cell shape of T. gondii. Its cytoskeleton also includes an intricate apical structure consisting of the conoid, two intraconoid microtubules, and two polar rings. The conoid is a 380-nm diameter motile organelle, consisting of fibers wound into a spiral like a compressed spring. FRAP analysis of transgenic T. gondii expressing YFP-alpha-tubulin reveals that the conoid fibers are assembled by rapid incorporation of tubulin subunits during early, but not late, stages of cell division. Electron microscopic analysis shows that in the mature conoid, tubulin is arranged into a novel polymer form that is quite different from typical microtubules.  相似文献   

19.
    
  1. Download : Download high-res image (486KB)
  2. Download : Download full-size image
  相似文献   

20.
    
The structures of protein assemblies are important for elucidating cellular processes at the molecular level. Three‐dimensional electron microscopy (3DEM) is a powerful method to identify the structures of assemblies, especially those that are challenging to study by crystallography. Here, a new approach, PRISM‐EM, is reported to computationally generate plausible structural models using a procedure that combines crystallographic structures and density maps obtained from 3DEM. The predictions are validated against seven available structurally different crystallographic complexes. The models display mean deviations in the backbone of <5 Å. PRISM‐EM was further tested on different benchmark sets; the accuracy was evaluated with respect to the structure of the complex, and the correlation with EM density maps and interface predictions were evaluated and compared with those obtained using other methods. PRISM‐EM was then used to predict the structure of the ternary complex of the HIV‐1 envelope glycoprotein trimer, the ligand CD4 and the neutralizing protein m36.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号