首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Several X-linked mutations that have associated sex chromosomal nondisjunction have been identified in the mouse. We describe a new semidominant X-linked mutation called patchy fur (Paf) that produces an abnormal coat. It maps to the distal end of the murine X chromosome very near the XY pseudoautosomal region. The degree of severity in affected mice is hemizygous males greater than homozygous females greater than heterozygous females. An unusual feature of Paf is that either the mutation itself or an inseparable chromosomal abnormality causes delayed disjunction of the X and Y chromosomes at meiotic metaphase I, which in turn results in approximately 19% XO progeny and slightly less than 1% XXY progeny from Paf/Y males. The effect occurs only in male carriers and thus must extend into the proximal end of the XY pairing region.  相似文献   

2.
XO Turner women, irrespective of the parental source of the X chromosome, are of short stature, and this is now thought to be largely a consequence of haploinsufficiency for the pseudoautosomal region (PAR) gene SHOX. X(p)O mice (with a paternal X) are developmentally retarded in fetal life, are underweight at birth, and show reduced weight gain in the first few weeks after birth. X(m)O mice, on the other hand, are more developmentally advanced than their XX siblings in fetal life; their postnatal growth has not hitherto been assessed. Here we show that X(m)O mice are not underweight at birth, but they nevertheless show reduced weight gain postnatally. The fact that postnatal growth is affected in X(p)O and X(m)O mice, means that this must be due to X dosage deficiency. In order to see if haploinsufficiency for a PAR gene was responsible for this growth deficit (cf SHOX deficiency in Turner women), X(m)Y*(X) females, in which the Y*(X) chromosome provides a second copy of the PAR, were compared with XX females. These X(m)Y*(X) females were also growth-retarded relative to their XX sibs, suggesting that it may be haploinsufficiency for a non-dosage-compensated X gene or genes outside the PAR that is responsible for the postnatal growth deficit in XO mice. The X genes known to escape X inactivation in the mouse have closely similar Y homologues. X(m)YSRY-negative females were therefore compared with XX females to see if the presence of the SRY-negative Y chromosome corrected the growth deficit; this proved to be the case. The postnatal growth deficit of XO mice is therefore probably due to haploinsufficiency for a non-dosage-compensated X gene that has a Y homologue that provides an equivalent function in the somatic tissues of males.  相似文献   

3.
4.
Meiotic studies in mice carrying the sex reversal (Sxr) factor   总被引:1,自引:0,他引:1  
A sex reversal factor (Sxr) that causes mice having apparently normal X chromosomes to become phenotypically male is transmitted in an autosomal pattern. The origin of the Sxr factor is still unknown. It seems most likely that it has originated from an autosomal gene mutation or is the result of a translocation of part of the Y chromosome to one of the autosomes. Chromosomes from four XY and six XO mice carrying this sex reversal factor were examined in the diakinesis stage of meiosis. The following unusual observations were noted: (1) in XY males carrying the Sxr factor, the X and Y chromosomes were separated more often than in controls. (2) The Y chromosome tends to be closer to an autosome when the X and Y are separate than when the X and Y are attached. (3) A chromosome fragment was present in 4/226 cells from two XO males and a single cell from an XY, Sxr carrier. Although there is no direct evidence, these observations seem to favor the possibility that the Sxr factor involves a chromosomal rearrangement rather than a single gene mutation.  相似文献   

5.
Sex chromosomes are the Achilles' heel of male meiosis in mammals. Mis-segregation of the X and Y chromosomes leads to sex chromosome aneuploidies, with clinical outcomes such as infertility and Klinefelter syndrome. Successful meiotic divisions require that all chromosomes find their homologous partner and achieve recombination and pairing. Sex chromosomes in males of many species have only a small region of homology (the pseudoautosomal region, PAR) that enables pairing. Until recently, little was known about the dynamics of recombination and pairing within mammalian X and Y PARs. Here, we review our recent findings on PAR behavior in mouse meiosis. We uncovered unexpected differences between autosomal chromosomes and the X-Y chromosome pair, namely that PAR recombination and pairing occurs later, and is under different genetic control. These findings imply that spermatocytes have evolved distinct strategies that ensure successful X-Y recombination and chromosome segregation.  相似文献   

6.
C. C. Akerib  B. J. Meyer 《Genetics》1994,138(4):1105-1125
The primary sex-determination signal of Caenorhabditis elegans is the ratio of X chromosomes to sets of autosomes (X/A ratio). This signal coordinately controls both sex determination and X chromosome dosage compensation. To delineate regions of X that contain counted signal elements, we examined the effect on the X/A ratio of changing the dose of specific regions of X, using duplications in XO animals and deficiencies in XX animals. Based on the mutant phenotypes of genes that are controlled by the signal, we expected that increases (in males) or decreases (in hermaphrodites) in the dose of X chromosome elements could cause sex-specific lethality. We isolated duplications and deficiencies of specific X chromosome regions, using strategies that would permit their recovery regardless of whether they affect the signal. We identified a dose-sensitive region at the left end of X that contains X chromosome signal elements. XX hermaphrodites with only one dose of this region have sex determination and dosage compensation defects, and XO males with two doses are more severely affected and die. The hermaphrodite defects are suppressed by a downstream mutation that forces all animals into the XX mode of sex determination and dosage compensation. The male lethality is suppressed by mutations that force all animals into the XO mode of both processes. We were able to subdivide this region into three smaller regions, each of which contains at least one signal element. We propose that the X chromosome component of the sex-determination signal is the dose of a relatively small number of genes.  相似文献   

7.
A Robertsonian translocation in the mouse between the X chromosome and chromosome 2 is described. The male and female carriers of the Rb(X.2)2Ad were fertile. A homozygous/hemizygous line was maintained. The influence of the X-autosomal Robertsonian translocation on anaphase I non-disjunction in male mice was studied by chromosome counts in cells at metaphase II of meiosis and by assessment of aneuploid progeny. The results conclusively show that the inclusion of Rb2Ad in the male genome induces non-disjunction at the first meoitic division. In second metaphase cells the frequency of sex-chromosomal aneuploidy was 10.8%, and secondary spermatocytes containing two or no sex chromosome were equally frequent. The Rb2Ad males sired 3.9% sex-chromosome aneuploid progeny. The difference in aneuploidy frequencies in the germ cells and among the progeny suggests that the viability of XO and XXY individuals is reduced. The pairing configurations of chromosomes 2, Rb2Ad and Y were studied during meiotic prophase by light and electron microscopy. Trivalent pairing was seen in all well spread nuclei. Complete pairing of the acrocentric autosome 2 with the corresponding segment of the Rb2Ad chromosome was only seen in 3.2% of the cells analysed in the electron microscope. The pairing between the X and Y chromosome in the Rb2Ad males corresponded to that in males with normal karyotype. Reasons for sex-chromosomal non-disjunction despite the normal pairing pattern between the sex chromosomes may be seen in the terminal chiasma location coupled with the asynchronous separation of the sex chromosomes and the autosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Spermatogenesis in XO,Sxr mice: role of the Y chromosome   总被引:2,自引:0,他引:2  
The goal of this investigation was to evaluate the role of the Y chromosome in spermatogenesis by a quantitative and qualitative analysis of spermatogenesis as it occurs in the absence of a significant portion of the Y chromosome, i.e., in XO,Sxr male mice. Although these mice have the testis-determining portion of the Y chromosome on their single X chromosome, they lack most of the Y chromosome. Since it was found that all sperm-specific structures were assembled in a normal spatial and temporal pattern in spermatids of XO,Sxr mice, the genes controlling these structures cannot be located on the Y chromosome outside of the Sxr region, and are more likely to be on autosomes or on the X chromosome. In spite of the assembly of the correct sperm-specific structures, spermatogenesis was not quantitatively normal in XO,Sxr mice and significantly reduced numbers of spermatids were found in the seminiferous tubules of these mice. Furthermore, two size classes of spermatids were found in the testes of XO,Sxr mice, normal and twice-normal size. These findings are suggestive of abnormalities of meiosis in XO,Sxr spermatocytes, which lack one of the two sex chromosomes, and may not implicate function of specific genes on the Y chromosome. Morphological abnormalities of spermatids, which were not unique to XO,Sxr mice, were observed and these may be due to either a defective testicular environment because of reduced numbers of germ cells or to the lack of critical Y chromosome-encoded products. Since pachytene spermatocytes of XO,Sxr mice exhibited a sex vesicle, it can be concluded that the assembly of this structure does not depend on the presence of either a complete Y chromosome or the pairing partner for the X chromosome.  相似文献   

9.
In a number of mammals, including mouse and man, it has been shown that at equivalent gestational ages, males are developmentally more advanced than females, even before the gonads form. In mice, although some strains of Y chromosome exert a minor accelerating effect in pre-implantation development, it is a post-implantation effect of the difference in X chromosome constitution that is the major cause of the male/female developmental difference. Thus XX females are retarded in their development by about 1.5 h relative to X(M)O females or XY males; however, they are more advanced than X(P)O females by about 4 h. It has been suggested that this early developmental difference between XX and XY embryos may "weight the dice" in favour of ovarian and testicular development, respectively, although expression of Sry will normally overcome any such bias. Here we test this proposal by comparing the relative frequencies of female, hermaphrodite and male development in X(P)O, XX and X(M)O mice that carry an incompletely penetrant Sry transgene. The results show that testicular tissue develops more frequently in XX,Sry transgenics than in either of the two types of XO transgenics. Thus the incidence of testicular development is affected by X dosage rather than by the developmental hierarchy. This implies there is a non-dosage compensated gene (or genes) on the X chromosome, which interacts with the testis-determining pathway. Since the pseudoautosomal region (PAR) is known to escape X-inactivation, penetrance of the Sry transgene was also assessed in X(M)Y(*X) mice that have two doses of the PAR but have a single dose of all genes proximal to the distal X marker Amel. These mice showed similar levels of testicular development to X(M)O mice with the transgene; thus the non-dosage compensated X gene maps outside the PAR.  相似文献   

10.
Chromosomal sex determination is phylogenetically widespread, having arisen independently in many lineages. Decades of theoretical work provide predictions about sex chromosome differentiation that are well supported by observations in both XY and ZW systems. However, the phylogenetic scope of previous work gives us a limited understanding of the pace of sex chromosome gain and loss and why Y or W chromosomes are more often lost in some lineages than others, creating XO or ZO systems. To gain phylogenetic breadth we therefore assembled a database of 4724 beetle species’ karyotypes and found substantial variation in sex chromosome systems. We used the data to estimate rates of Y chromosome gain and loss across a phylogeny of 1126 taxa estimated from seven genes. Contrary to our initial expectations, we find that highly degenerated Y chromosomes of many members of the suborder Polyphaga are rarely lost, and that cases of Y chromosome loss are strongly associated with chiasmatic segregation during male meiosis. We propose the “fragile Y” hypothesis, that recurrent selection to reduce recombination between the X and Y chromosome leads to the evolution of a small pseudoautosomal region (PAR), which, in taxa that require XY chiasmata for proper segregation during meiosis, increases the probability of aneuploid gamete production, with Y chromosome loss. This hypothesis predicts that taxa that evolve achiasmatic segregation during male meiosis will rarely lose the Y chromosome. We discuss data from mammals, which are consistent with our prediction.  相似文献   

11.
Summary Wild-type male embryos and young larvae of the nematode Caenorhabditis elegans were more sensitive than wild-type hermaphrodites to inactivation by gamma rays; wild-type males have one X chromosome per cell (XO), whereas wild-type hermaphrodites have two (XX). Furthermore, after transformation into fertile hermaphrodites by a her-1 mutation, XO animals were more radiosensitive than XX her-1 animals; and XX animals transformed into fertile males by a tra-1 mutation did not show increased radiosensitivity. It is concluded that wild-type males are more radiosensitive than wild-type hermaphrodites because they have one X chromosome rather than two, and the predominant mode of inactivation of XO animals involves damage to the single X chromosome. No sex-specific differences in survival were observed after UV irradiation.  相似文献   

12.
The human sex chromosomes differ in sequence, except for the pseudoautosomal regions (PAR) at the terminus of the short and the long arms, denoted as PAR1 and PAR2. The boundary between PAR1 and the unique X and Y sequences was established during the divergence of the great apes. During a copy number variation screen, we noted a paternally inherited chromosome X duplication in 15 independent families. Subsequent genomic analysis demonstrated that an insertional translocation of X chromosomal sequence into theMa Y chromosome generates an extended PAR. The insertion is generated by non-allelic homologous recombination between a 548 bp LTR6B repeat within the Y chromosome PAR1 and a second LTR6B repeat located 105 kb from the PAR boundary on the X chromosome. The identification of the reciprocal deletion on the X chromosome in one family and the occurrence of the variant in different chromosome Y haplogroups demonstrate this is a recurrent genomic rearrangement in the human population. This finding represents a novel mechanism shaping sex chromosomal evolution.  相似文献   

13.
Both mouse and man have the common XX/XY sex chromosome mechanism. The X chromosome is of original size (5-6% of female haploid set) and the Y is one of the smallest chromosomes of the complement. But there are species, belonging to a variety of orders, with composite sex chromosomes and multiple sex chromosome systems: XX/XY1Y2 and X1X1X2X2/X1X2Y. The original X or the Y, respectively, have been translocated on to an autosome. The sex chromosomes of these species segregate regularly at meiosis; two kinds of sperm and one kind of egg are produced and the sex ratio is the normal 1:1. Individuals with deviating sex chromosome constitutions (XXY, XYY, XO or XXX) have been found in at least 16 mammalian species other than man. The phenotypic manifestations of these deviating constitutions are briefly discussed. In the dog, pig, goat and mouse exceptional XX males and in the horse XY females attract attention. Certain rodents have complicated mechanisms for sex determination: Ellobius lutescens and Tokudaia osimensis have XO males and females. Both sexes of Microtus oregoni are gonosomic mosaics (male OY/XY, female XX/XO). The wood lemming, Myopus schisticolor, the collared lemming, Dirostonyx torquatus, and perhaps also one or two species of the genus Akodon have XX and XY females and XY males. The XX, X*X and X*Y females of Myopus and Dicrostonyx are discussed in some detail. The wood lemming has proved to be a favourable natural model for studies in sex determination, because a large variety of sex chromosome aneuploids are born relatively frequently. The dosage model for sex determination is not supported by the wood lemming data. For male development, genes on both the X and the Y chromosomes are necessary.  相似文献   

14.
LeMaire-Adkins R  Hunt PA 《Genetics》2000,156(2):775-783
A fundamental principle of Mendelian inheritance is random segregation of alleles to progeny; however, examples of distorted transmission either of specific alleles or of whole chromosomes have been described in a variety of species. In humans and mice, a distortion in chromosome transmission is often associated with a chromosome abnormality. One such example is the fertile XO female mouse. A transmission distortion effect that results in an excess of XX over XO daughters among the progeny of XO females has been recognized for nearly four decades. Utilizing contemporary methodology that combines immunofluorescence, FISH, and three-dimensional confocal microscopy, we have readdressed the meiotic segregation behavior of the single X chromosome in oocytes from XO females produced on two different inbred backgrounds. Our studies demonstrate that segregation of the univalent X chromosome at the first meiotic division is nonrandom, with preferential retention of the X chromosome in the oocyte in approximately 60% of cells. We propose that this deviation from Mendelian expectations is facilitated by a spindle-mediated mechanism. This mechanism, which appears to be a general feature of the female meiotic process, has implications for the frequency of nondisjunction in our species.  相似文献   

15.
There is extensive evidence for the existence of a meiotic checkpoint that acts to eliminate spermatocytes that fail to achieve full sex chromosome synapsis at the pachytene stage of the first meiotic prophase. XYY mice are nearly always sterile, with clear signs of meiotic impairment, and sex chromosome asynapsis has been proposed to underlie this impairment. However, a study of XYY*(X) mice (mice having three sex chromosomes but only a single dose of Y genes) revealed that these mice are fertile, and thus implicated Y gene dosage as a major factor in the sterility of XYY mice. To address this question further, sex chromosome synapsis and spermatogenic proficiency were compared between XYY*(X) and XYY mice generated in the same litters. This established that differences in spermatogenic proficiency within and between the two genotypes correlated with the frequency of radial trivalent formation (full sex chromosome synapsis); XYY*(X) males, as a group, had double the radial trivalent frequency of XYY males. This observation provides strong support for the view that sex chromosome asynapsis (or some consequence thereof), rather than Y gene dosage, is the major factor leading to the meiotic impairment of XYY mice.  相似文献   

16.
17.
To shed light on the biological origins of sex differences in neural tube defects (NTDs), we examined Trp53-null C57BL/6 mouse embryos and neonates at 10.5 and 18.5 days post coitus (dpc) and at birth. We confirmed that female embryos show more NTDs than males. We also examined mice in which the testis-determining gene Sry is deleted from the Y chromosome but inserted onto an autosome as a transgene, producing XX and XY gonadal females and XX and XY gonadal males. At birth, Trp53 nullizygous mice were predominantly XY rather than XX, irrespective of gonadal type, showing that the sex difference in the lethal effect of Trp53 nullizygosity by postnatal day 1 is caused by differences in sex chromosome complement. At 10.5 dpc, the incidence of NTDs in Trp53-null progeny of XY* mice, among which the number of the X chromosomes varies independently of the presence or absence of a Y chromosome, was higher in mice with two copies of the X chromosome than in mice with a single copy. The presence of a Y chromosome had no protective effect, suggesting that sex differences in NTDs are caused by sex differences in the number of X chromosomes.  相似文献   

18.
Summary The phenotype of the variegation position effect white-mottled-2 in Drosophila hydei is modified by supernumerary Y chromosomes and by fractions thereof. Different translocated Y fragments have varying degrees of effectiveness in suppressing the mutant phenotype in the mottled eyes. In fragments derived from similar regions of the Y chromosome the suppressive ability is related to their cytological lengths. In contrast, fragments derived from distinctive regions of the Y chromosome differ markedly in their effectiveness, and these differences are not necessarily correlated with the cytological length. In particular, fragments of the distal region of YL are more effective in enhancing the wild phenotype than are proximal fragments of similar size.The mutation white-mottled-2 is accompanied by a complex rearrangement of the X chromosome. This inhibits crossing over between large regions of the X chromosome in structural heterozygotes; it causes also a delay of development and a considerable reduction of viability in homozygous females and hemizygous males. XO males are inviable. The inviability of these males is partially covered by Y fragments. With respect to viability, the fragments show similar regional differences in effectiveness as in the modification of the mottled phenotype.There is also a parental effect on the modulation of the white-mottled-2 phenotype.There is no correlation between the activity of Y chromosomal factors on spermiogenesis and the activity of Y factors on the modification of the variegation position effect. Suppression of Y chromosomal sites which normally unfold lampbrush loops during the spermatocyte stage and whose activity has previously been shown to be indispensible for normal differentiation of the male germ line cells does not result in any visible alterations of the effectiveness on the mottling. So there is obviously independence between these two different genetic activities of Y chromosomal factors.  相似文献   

19.
Yukifumi Nagai  Susumu Ohno 《Cell》1977,10(4):729-732
The XO sex chromosome constitution has been found in both sexes of the mole-vole (Ellobius lutescens) belonging to the rodent family Microtinae. This enigmatic species has apparently been enduring a 50% zygotic lethality. The current serological study revealed the presence in XO males and the absence from XO females of H-Y (histocompatibility Y) antigen. In all the mammalian species studied thus far, the expression of H-Y antigen strictly coincided with the presence of testicular tissue and not necessarily with the presence of the Y chromosome. The testis-organizing function of the H-Y gene appears to have been confirmed.In the mole-vole, X linkage of the testis-organizing H-Y gene is favored over its autosomal inheritance. Only X linkage of the H-Y gene creates a compelling evolutionary need to change the female sex chromosome constitution from XX to XO, and to abandon the dosage compensation by an X inactivation mechanism, so that the nonproductive XH-YX zygote can be eliminated as an embryonic lethal. With regard to the electrophoretic mobilities of three X-linked marker enzymes, however, a genetic difference between the male-specific XH-Y and the female-specific X was not detected. This might reflect a relatively recent speciation.  相似文献   

20.
Kenneth J. Livak 《Genetics》1984,107(4):611-634
The D. melanogaster DNA segment in the recombinant phage lambda Dm2L1 contains at least eight copies of a tandemly repeated 1250-base pair (bp) sequence (henceforth called the 2L1 sequence). Testes from XO D. melanogaster males contain an abundant 800-base RNA species that is homologous to a 520-bp region of the 2L1 sequence. Blotting experiments show that the 2L1 sequence is repeated in the D. melanogaster genome and is present on both the X and Y chromosomes. With the use of X-Y translocations, the 2L1 sequence has been mapped to a region between kl-1 and kl-2 on the long arm of the Y chromosome. In Oregon-R wild type there are an estimated 200 copies of the 2L1 sequence on the X chromosome and probably at least 80 copies of the Y chromosome. In some other strains the repetition frequency on the Y chromosome is about the same, but the copy number on the X chromosome is much reduced. On the basis of the five strains investigated, there is a correlation between copy number of the 2L1 sequence on the X chromosome and the presence of a particular allele of the Stellate locus (Ste; 1-45.7). It seems that low copy number corresponds to Ste+ and high copy number corresponds to Ste. The Ste locus determines whether single or star-shaped crystals are observed in the spermatocytes of XO males. Studies using D. simulans and D. mauritiana DNA show that the 2L1 sequence is homologous to restriction fragments in male DNA but not female DNA, indicating that this sequence is present only on the Y chromosome in these two species. In DNA derived from D. erecta, D. teissieri and D. yakuba, there is very little, if any, hybridization with the 2L1 sequence probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号