首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell surface of Trypanosoma brucei is dominated by the glycosylphosphatidylinositol-anchored variant surface glycoprotein (VSG), which is essential for immune evasion. VSG biosynthesis, trafficking, and turnover are well documented, but trans-membrane domain (TMD) proteins, including the invariant surface glycoproteins (ISGs), are less well characterized. Internalization and degradation of ISG65 depend on ubiquitylation of conserved cytoplasmic lysines. Using epitope-tagged ISG75 and reporter chimeric proteins bearing the cytoplasmic and trans-membrane regions of ISG75, together with multiple mutants with lysine-to-arginine mutations, we demonstrate that the cytoplasmic tail of ISG75 is both sufficient and necessary for endosomal targeting and degradation. The ISG75 chimeric reporter protein localized to endocytic organelles, while lysine-null versions were significantly stabilized at the cell surface. Importantly, ISG75 cytoplasmic lysines are modified by extensive oligoubiquitin chains and ubiquitylation is abolished in the lysine-null version. Furthermore, we find evidence for differential modes of turnover of ISG65 and ISG75. Full-length lysine-null ISG65 localization and protein turnover are significantly perturbed, but ISG75 localization and protein turnover are not, while ubiquitin conjugates can be detected for full-length lysine-null ISG75 but not ISG65. We find that the ISG75 ectodomain has a predicted coiled-coil, suggesting that ISG75 could be part of a complex, while ISG65 behaves independently. We also demonstrate a developmental stage-specific mechanism for exclusion of surface ISG expression in insect-stage cells by a ubiquitin-independent mechanism. We suggest that ubiquitylation may be a general mechanism for regulating trans-membrane domain surface proteins in trypanosomes.  相似文献   

2.
Surface proteins of the mammalian stage of the parasitic protozoan, Trypanosoma brucei, were biotinylated with sulfosuccinimidyl 6-(biotinamido) hexanoate. Since the predominant protein labeled by this reagent is the membrane form of the variant surface glycoprotein (mfVSG), a procedure was developed to convert mfVSG to its soluble form by the endogenous glycosylphosphatidylinositol-specific phospholipase C while retaining other biotinylated surface proteins in a membrane-bound state. From these membranes, three novel glycoproteins of 60, 65, and 75 kDa could be isolated by a combination of Triton X-114 phase separation and precipitations by streptavidin and concanavalin A coupled to solid supports. These polypeptides were detected in trypanosomes expressing different mfVSGs and are thus considered to be invariant. In a variant clone in which the mfVSG is trypsin-sensitive, the invariant surface glycoproteins of 65 and 75 kDa, designated ISG65 and ISG75, respectively, were proteolytically degraded with similar kinetics as the mfVSG. Neither ISG65 nor ISG75 could be detected in procyclic trypanosomes, the stage of the parasite characteristic for the insect midgut. Gene cloning reported in the accompanying paper (Ziegelbauer, K., Multhaup, G., and Overath, P. (1992) J. Biol. Chem. 267, 10797-10803) suggests that ISG65 and ISG75 are transmembrane proteins.  相似文献   

3.
A complementary DNA encoding the variant surface glycoprotein (VSG) of Trypanosoma evansi Rode Trypanozoon antigenic type (RoTat)1.2, currently used for experimental serological diagnosis of T. evansi infection in livestock, was cloned as a recombinant plasmid and sequenced. A recombinant baculovirus containing the coding region of RoTat1.2 VSG was constructed to express the protein in Spodoptera frugiperda [corrected] insect cells. From this, sufficient quantities of the recombinant protein are being produced for empirical and wide-scale objective assessment of the diagnostic potential of this antigen. The gene encoding the RoTat1.2 VSG was shown by PCR to be present in the genomes of many different cloned isolates of T. evansi, but not T. brucei, from geographically separate regions of Africa, Asia, and South America. With the recombinant RoTat1.2 at hand, it is now possible to investigate the extent to which epitopes on this VSG are conserved among different T. evansi isolates.  相似文献   

4.
The tsetse fly transmitted salivarian trypanosome, Trypanosoma congolense of the subgenus Nanomonas, is the most significant of the trypanosomes with respect to the pathology of livestock in sub-Saharan Africa. Unlike the related trypanosome Trypanosoma brucei of the subgenus Trypanozoon, the major surface molecules of the insect stages of T. congolense are poorly characterized. Here, we describe the purification and structural characterization of the glutamic acid and alanine-rich protein, one of the major surface glycoproteins of T. congolense procyclic and epimastigote forms. The glycoprotein is a glycosylphosphatidylinositol-anchored molecule with a galactosylated glycosylphosphatidylinositol anchor containing an sn-1-stearoyl-2-l-3-HPO(4)-1-(2-O-acyl)-d-myo-inositol phospholipid moiety. The 21.6-kDa polypeptide component carries two large mannose- and galactose-containing oligosaccharides linked to threonine residues via phosphodiester linkages. Mass spectrometric analyses of tryptic digests suggest that several or all of the closely related glutamic acid and alanine-rich protein genes are expressed simultaneously in a T. congolense population growing in vitro.  相似文献   

5.
In Trypanosoma brucei the GPI-anchored variant surface glycoprotein (VSG) represents ∼90% of cell surface protein and a major proportion of endoplasmic reticulum (ER) biosynthetic output. We identified four trypanosomatid-specific genes encoding candidate ER-resident proteins; all were required for normal proliferation. For Tb11.01.2640 and Tb11.01.8120, an increase in VSG abundance was found on silencing, while the protein products localized to the ER; we designated these ERAP32 and ERAP18 for ER-associated protein of 32 kDa and 18 kDa. Silencing ERAP32 or ERAP18 did not alter expression levels of ISG65 or ISG75, the major surface trans-membrane domain proteins. Surface biotinylation or immunoflorescence did not identify intracellular VSG accumulation, while FACS and fluorescence microscopy indicated that the cells were not increased in size, arguing for increased VSG density on the cell surface. Therefore, ERAP32 and ERAP18 are trypanosome-specific ER-localized proteins with a major role in VSG protein export and, contrary to current paradigms, VSG is not saturated on the cell surface.  相似文献   

6.
Sendai virus glycoproteins HN and F were purified by immunoaffinity chromatography from virions disrupted by beta-D-octylglucoside. The purified glycoproteins were reconstituted in recombinant vesicles with phosphatidylcholine or phosphatidylethanolamine and phosphatidylserine. P815 or EL-4 cells treated with glycoprotein HN/F-phosphatidylcholine recombinant vesicles acquired the glycoproteins and retained them in the plasma membrane for 4 h as demonstrated by surface immunofluorescence specific for each protein. Cells treated with glycoprotein HN-phosphatidylcholine recombinant vesicles initially bore glycoprotein HN on the surface but the protein eluted within 2 h. Surfaces of cells treated with glycoprotein F-phosphatidylcholine recombinant vesicles did not acquire the glycoprotein. Cells treated with glycoprotein HN-phosphatidylethanolamine: phosphatidylserine recombinant vesicles or glycoprotein F-phosphatidylethanolamine: phosphatidylserine recombinant vesicles in the presence of 5 mM Ca2+ acquired each protein for at least 2 h. Experiments showed that the acquired glycoproteins capped with antibody and that when glycoproteins HN and F were together on the surface they co-capped. Acquired viral glycoproteins did not co-cap with intrinsic H-2 glycoproteins.  相似文献   

7.
Recently we identified multiple suramin-sensitivity genes with a genome wide screen in Trypanosoma brucei that includes the invariant surface glycoprotein ISG75, the adaptin-1 (AP-1) complex and two deubiquitylating enzymes (DUBs) orthologous to ScUbp15/HsHAUSP1 and pVHL-interacting DUB1 (type I), designated TbUsp7 and TbVdu1, respectively. Here we have examined the roles of these genes in trafficking of ISG75, which appears key to suramin uptake. We found that, while AP-1 does not influence ISG75 abundance, knockdown of TbUsp7 or TbVdu1 leads to reduced ISG75 abundance. Silencing TbVdu1 also reduced ISG65 abundance. TbVdu1 is a component of an evolutionarily conserved ubiquitylation switch and responsible for rapid receptor modulation, suggesting similar regulation of ISGs in T. brucei. Unexpectedly, TbUsp7 knockdown also blocked endocytosis. To integrate these observations we analysed the impact of TbUsp7 and TbVdu1 knockdown on the global proteome using SILAC. For TbVdu1, ISG65 and ISG75 are the only significantly modulated proteins, but for TbUsp7 a cohort of integral membrane proteins, including the acid phosphatase MBAP1, that is required for endocytosis, and additional ISG-related proteins are down-regulated. Furthermore, we find increased expression of the ESAG6/7 transferrin receptor and ESAG5, likely resulting from decreased endocytic activity. Therefore, multiple ubiquitylation pathways, with a complex interplay with trafficking pathways, control surface proteome expression in trypanosomes.  相似文献   

8.
The parasitic protozoanTrypanosoma congolenseexhibits a dense surface coat which is pivotal for immunoevasion of the parasite. This dense surface coat is made of a single protein species, the variant surface glycoprotein, which is present in a high copy number. The protein is anchored to the plasma membrane by a glycosyl-phosphatidylinositol membrane anchor. A detailed study of the structure ofT. congolensestrain 423 (clone BENat 1.3) variant surface glycoprotein glycosyl-phosphatidylinositol membrane anchor was performed. Radioactively labelled core-glycan prepared by dephosphorylation, deamination and reduction was analysed by high- pH anion-exchange chromatography, size-exclusion and lectin affinity chromatography. Additionally the glycosyl-phosphatidylinositol mem brane anchor core-glycan was purified from a bulk preparation of variant surface glycoprotein and subjected to mass spectrometry and methylation analysis. Using these methods we could identify a novel galactose- β1,6-N-acetyl-glucosamine-β1,4-branch modifying the mannose adjacent to the glucosamine of the mannose-α1,2-mannose-α1,6-mannose-α1,4- glucosamine core-glycan of the variant surface glycoprotein glycosyl-phos phatidylinositol membrane anchor. Furthermore the biosynthetic pathway leading to this novel structure was investigated. Two putative glycosyl-phosphatidylinositol anchor precursors were identified having structures identical to the previously characterizedTrypanosoma brucei bruceiglycolipids P2 and P3 (also designated glycolipid A and C) consistent with a trimannosyl core and a dimyristoyl-glycerol. Both glycosyl-phosphatidylinositol anchor precursors ofT. congolensedo not possess the side-branch modification found on the mature protein membrane anchor, implying that the sugar side-chain is added to the anchor during its passage through the Golgi-apparatus.  相似文献   

9.
A simple new technique was developed for the rapid purification of either the membrane-bound or the released forms of the variant surface glycoprotein of Trypanosoma brucei in high yield. Whole cells were used as the source of the membrane-bound form, and the supernatant of benzyl alcohol-treated cells was used as the source of the released form. The technique was based on extraction of the acid-treated protein into chloroform/methanol, followed by selective re-partition into aqueous salt solution. The yield of purified protein was found to be dependent critically on a low pH during the extraction/re-partition stages. This finding and the ability to cycle the protein repeatedly through organic and aqueous phases in a strictly pH-dependent manner suggested that the protein could undergo fully reversible denaturation/renaturation only while in an extensively protonated form. The yield was independent of the polarity of the organic phase and the protein concentration over a wide range. After purification, both forms retain their ability to react with specific antibody raised against the authentic native protein purified by conventional means. The amino acid composition and the identity of the N-terminal amino acid was the same for both forms of the protein. In addition, both forms had blocked C-terminal residues. There were determined to be 1.13 X 10(7) copies of the variant surface glycoprotein per cell.  相似文献   

10.

Background

The diagnosis of Human African Trypanosomiasis relies mainly on the Card Agglutination Test for Trypanosomiasis (CATT). While this test is successful, it is acknowledged that there may be room for improvement. Our aim was to develop a prototype lateral flow test based on the detection of antibodies to trypanosome antigens.

Methodology/Principal Findings

We took a non-biased approach to identify potential immunodiagnostic parasite protein antigens. The IgG fractions from the sera from Trypanosoma brucei gambiense infected and control patients were isolated using protein-G affinity chromatography and then immobilized on Sepharose beads. The IgG-beads were incubated with detergent lysates of trypanosomes and those proteins that bound were identified by mass spectrometry-based proteomic methods. This approach provided a list of twenty-four trypanosome proteins that selectively bound to the infection IgG fraction and that might, therefore, be considered as immunodiagnostic antigens. We selected four antigens from this list (ISG64, ISG65, ISG75 and GRESAG4) and performed protein expression trials in E. coli with twelve constructs. Seven soluble recombinant protein products (three for ISG64, two for ISG65 and one each for ISG75 and GRESAG4) were obtained and assessed for their immunodiagnostic potential by ELISA using individual and/or pooled patient sera. The ISG65 and ISG64 construct ELISAs performed well with respect to detecting T. b. gambiense infections, though less well for detecting T. b. rhodesiense infections, and the best performing ISG65 construct was used to develop a prototype lateral flow diagnostic device.

Conclusions/Significance

Using a panel of eighty randomized T. b. gambiense infection and control sera, the prototype showed reasonable sensitivity (88%) and specificity (93%) using visual readout in detecting T. b. gambiense infections. These results provide encouragement to further develop and optimize the lateral flow device for clinical use.  相似文献   

11.
Escherichia coli is widely employed to produce recombinant proteins because this microorganism is simple to manipulate, inexpensive to culture, and of short duration to produce a recombinant protein. However, contamination of molecular chaperone DnaK during purification of the recombinant protein is sometimes a problem, since DnaK sometimes has a negative effect on subsequent experiments. Previously, several efforts have been done to remove the DnaK contaminants by several sequential chromatography or washing with some expensive chemicals such as ATP. Here, we developed a simple and inexpensive method to express and purify recombinant proteins based on an E. coli dnaK-deletion mutant. The E. coli ΔdnaK52 mutant was infected by λDE3 phage to overexpress desired recombinant proteins under the control of T7 promoter. Using this host cell, recombinant hexa histidine-tag fused GrpE, which is well known as a co-chaperone for DnaK and to strongly interact with DnaK, was overexpressed and purified by one-step nickel affinity chromatography. As a result, highly purified recombinant GrpE was obtained without washing with ATP. The purified recombinant GrpE showed a folded secondary structure and a dimeric structure as previous findings. In vitro ATPase activity assay and luciferase-refolding activity assay demonstrated that the recombinant GrpE worked together with DnaK. Thus, this developed method would be rapid and useful for expression and purification of recombinant proteins which is difficult to remove DnaK contaminants.  相似文献   

12.
Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing α-1,3-fucose and α-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.  相似文献   

13.
Glycoprotein IIIb (also known as glycoprotein IV) is a major glycoprotein present on the surface of human platelets. Recent studies suggest that glycoprotein IIIb may be a receptor site for thrombospondin. Thrombospondin, a multifunctional adhesive glycoprotein released from stimulated platelets, plays an important role in the stabilization of platelet aggregates. In this study, a new method for the purification of glycoprotein IIIb is described. Glycoprotein IIIb was isolated from Triton X-114 platelet membrane extracts, under nondenaturing conditions, by tandem anion-exchange and size exclusion fast protein liquid chromatography. The purified glycoprotein had the same apparent molecular mass (88 kDa) under nonreducing or reducing conditions. The tryptic peptide map of the purified protein was identical to that of bona fide glycoprotein IIIb as isolated from two-dimensional polyacrylamide gels of platelet membrane proteins. In addition, the purified glycoprotein was recognized by an anti-GPIIIb monoclonal antibody (OKM5). The purified glycoprotein specifically bound to thrombospondin in the presence of calcium. Monospecific anti-GPIIIb antibodies interfered with the expression of endogenous thrombospondin on thrombin-activated platelets and partially inhibited collagen- and thrombin-induced platelet aggregation without a significant effect on platelet secretion. Glycoprotein IIIb, by interacting with thrombospondin on the activated platelet surface, may play an important role in the platelet aggregation process.  相似文献   

14.
Exendin-4, a peptide analogue of glucagon-like peptide-1 (GLP-1), has been developed for treatment of type 2 diabetes. Herein, the secretive exendin-4 fusion protein, expressed by methanol induction in Pichia pastoris system, was purified to homogeneity by chromatography followed by enterokinase cleavage of the fusion protein and subsequent purification of the recombinant exendin-4. Purity of the recombinant exendin-4 was 95.6%. Bioactivity assay revealed that it had glucose-lowering and insulin-releasing action in vivo.  相似文献   

15.
Control of human African trypanosomiasis (HAT) is dependent on accurate diagnosis and treatment of infected patients. However, sensitivities of tests in routine use are unsatisfactory, due to the characteristically low parasitaemias in naturally infected individuals. We have identified a conserved sequence in the repetitive insertion mobile element (RIME) of the sub-genus Trypanozoon and used it to design primers for a highly specific loop-mediated isothermal amplification (LAMP) test. The test was used to analyse Trypanozoon isolates and clinical samples from HAT patients. The RIME LAMP assay was performed at 62 degrees C using real-time PCR and a water bath. DNA amplification was detectable within 25min. All positive samples detected by gel electrophoresis or in real-time using SYTO-9 fluorescence dye could also be detected visually by addition of SYBR Green I to the product. The amplicon was unequivocally confirmed through restriction enzyme NdeI digestion, analysis of melt curves and sequencing. The analytical sensitivity of the RIME LAMP assay was equivalent to 0.001 trypanosomes/ml while that of classical PCR tests ranged from 0.1 to 1000 trypanosomes/ml. LAMP detected all 75 Trypanozoon isolates while TBR1 and two primers (specific for sub-genus Trypanozoon) showed a sensitivity of 86.9%. The SRA gene PCR detected 21 out of 40 Trypanosoma brucei rhodesiense isolates while Trypanosoma gambiense-specific glycoprotein primers (TgsGP) detected 11 out of 13 T. b. gambiense isolates. Using clinical samples, the LAMP test detected parasite DNA in 18 out of 20 samples which included using supernatant prepared from boiled blood, CSF and direct native serum. The sensitivity and reproducibility of the LAMP assay coupled with the ability to detect the results visually without the need for sophisticated equipment indicate that the technique has strong potential for detection of HAT in clinical settings. Since the LAMP test shows a high tolerance to different biological substances, determination of the appropriate protocols for processing the template to make it a user-friendly technique, prior to large scale evaluation, is needed.  相似文献   

16.
Lectins are carbohydrate-binding proteins that are ubiquitous in nature. Their ability to specifically bind carbohydrates has been used as a means of purification mainly through affinity chromatography techniques. Plant lectins are one of the most thoroughly studied class of lectins, however, details of theirin situ function remains elusive. Recent advances in recombinant DNA techniques have been used in several laboratories to study the function of these lectins by heterologous over-expression. The larger subunit of theDolichos biflorus seed lectin was described by Chao et al. in 1994 and purification through affinity chromatography techniques was described. Here we report on a new method for the purification of this recombinant protein with techniques that are not dependent on the ability of the lectin to bind sugars. This method may have uses in the purification of mutant proteins that may not bind carbohydrates. Characterization of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption ionization (MALDI) mass spectroscopy shows that the lectin is over 99% pure with a molecular weight of 27,090±16.17 Da, and hemagglutination assays confirm that the lectin retains its biological activity.  相似文献   

17.
BJ-HCC-2 is one of the cancer/testis antigens that may be the most promising targets for tumor immunotherapy. To investigate the expression of BJ-HCC-2 protein in tumor cells and its capacity to elicit CTL response, the recombinant protein of BJ-HCC-2 was expressed in the inclusion bodies in Escherichia coli. The inclusion bodies were solubilized effectively with 0.3% N-lauroyl sarcosine in alkaline buffer. Under this denatured form, the BJ-HCC-2 protein carrying 6x histidine tag was purified with Ni-NTA affinity chromatography in a single step with a purity of over 97%. The yield of the purified protein was about 78%. The purified recombinant protein was refolded in a simple way. The correct refolding of the recombinant protein was verified in the recovery of its secondary and tertiary structures as assessed by circular dichroism and fluorescence emission spectra. The recovery rate of refolded protein was 92.1%. The renatured protein displayed its immunoreactivity with the antibodies to BJ-HCC-2 protein by Western blotting. This method of protein purification and refolding is easy to manipulate and may be applicable to the hydrophobic proteins that are unable to be purified by other methods.  相似文献   

18.
A His-tag recombinant carboxyl half part of the HTLV-I surface envelope glycoprotein was overexpressed in E. coli as a secreted form in order to study its biochemical properties and to determine its three-dimensional structure by X-ray crystallography. Starting from several hundred milliliters of culture, a centrifugation was used to eliminate the cells. After solubilization and centrifugation, the protein was then purified by a one-step chromatographic purification procedure. Immobilized Metal Affinity Chromatography (IMAC) was performed by evaluating the tri-dentate iminodiacetic acid (IDA) chelating group with chelating Sepharose fast flow, and the tetra-dendate nitrilotriacetic acid (NTA) chelating group with NTA–agarose. The latter was the most suitable gel for our protein. This expression system and the use of affinity chromatography is a rapid technique to obtain a soluble protein for use in structural studies to further understand the mechanisms of HTLV-1 entry into target cells.  相似文献   

19.
Brevibacillus choshinensis (formerly Bacillus brevis) is a protein-hyperproducing bacterium and has been used for commercial protein production. Here, we cloned thioredoxin (trxA) and thioredoxin reductase (trxB) genes from B. choshinensis, and expressed the gene products in Escherichia coli with an amino-terminal hexa-His-tag for purification and characterization. His-TrxA and His-TrxB were purified to homogeneity with one-step Ni-NTA affinity column chromatography, and the two recombinant proteins showed identical specific activity with or without removal of the amino-terminal His-tag, indicating that the extrasequence containing the hexa-His-tag did not affect their enzymatic activities. The E. coli expression system used here resulted in a 40-fold increase in production of His-TrxB protein compared to the level of native TrxB produced in non-recombinant B. choshinensis cells. TrxA and TrxB proteins with carboxy-terminal His-tag (TrxA-His and TrxB-His) were successfully expressed in B. choshinensis and were purified by Ni-NTA column chromatography. Co-expression of TrxA-His with recombinant human epidermal growth factor (hEGF) in B. choshinensis promoted the extracellular production of hEGF by up to about 200%.  相似文献   

20.
A novel membrane-bound glycan-phosphatidylinositol-specific phospholipase C, which catalyzes the conversion of membrane form variant surface glycoproteins to soluble variant surface glycoproteins, with the release of sn-1,2-dimyristylglycerol, has been isolated from Trypanosoma brucei. The activity was solubilized from trypanosome membrane fractions in non-ionic detergent and purified by anion exchange chromatography on DEAE-cellulose followed by chromatography on phosphatidylinositol-Sepharose. The enzyme constitutes about 0.1% of the total cellular protein and has an apparent molecular weight of 39,800. The enzyme shows a head group specificity for molecules containing carbohydrate covalently linked to glycan-phosphatidylinositol, but can also act on the monoacyl derivative of membrane form variant surface glycoprotein. It shows no specific ion requirements but is stimulated by thiol-reducing agents and inhibited by ions that thiols chelate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号