首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Obtaining random homozygous mutants in mammalian cells for forward genetic studies has always been problematic due to the diploid genome. With one mutation per cell, only one allele of an autosomal gene can be disrupted, and the resulting heterozygous mutant is unlikely to display a phenotype. In cells with a genetic background deficient for the Bloom's syndrome helicase, such heterozygous mutants segregate homozygous daughter cells at a low frequency due to an elevated rate of crossover following mitotic recombination between homologous chromosomes. We constructed DNA vectors that are selectable based on their copy number and used these to isolate these rare homozygous mutant cells independent of their phenotype. We use the piggyBac transposon to limit the initial mutagenesis to one copy per cell, and select for cells that have increased the transposon copy number to two or more. This yields homozygous mutants with two allelic mutations, but also cells that have duplicated the mutant chromosome and become aneuploid during culture. On average, 26% of the copy number gain events occur by the mitotic recombination pathway. We obtained homozygous cells from 40% of the heterozygous mutants tested. This method can provide homozygous mammalian loss-of-function mutants for forward genetic applications.  相似文献   

4.
The isolation of conditional mutants with an altered copy number of the R plasmid R1drd-19 is described. Temperature-dependent as well as amber-suppressible mutants were found. These mutant plasmids have been named pKN301 and pKN303, respectively. Both types of mutations reside on the R plasmid. No difference in molecular weight could be detected by neutral sucrose gradient centrifugation for any of the mutant plasmids when compared with the wild-type plasmid. The number of copies of the plasmids was determined by measurement of the specific activity of the R plasmid-mediated β-lactamase and by measurement of covalently closed circular (CCC) DNA in alkaline sucrose gradients and dye-CsCl density gradients. Below 34 °C the temperature-dependent mutant, pKN301, had the same copy number as the wild type, while this was four times that of the wild type above 37 °C. The amber mutant pKN303 had a copy number indistinguishable from that of the wild-type plasmid in a strain containing a strong amber suppressor and a copy number about five times that of the wild-type plasmid in a strain lacking an amber suppressor. In a strain containing a temperature-sensitive amber suppressor, the amber mutant's copy number increased with the decrease in amber suppressor activity. Thus, the existence of the temperature-dependent and the amber-suppressible R-plasmid copy mutants indicates that the system that controls the replication of plasmid R1drd-19 contains an element with a negative function and that this element is a protein.  相似文献   

5.
Group Y incompatibility and copy control of P1 prophage   总被引:4,自引:0,他引:4  
We have identified a restriction fragment (EcoRI-5) of bacteriophage P1 that, when cloned in a λ prophage, expresses incompatibility characteristic of the unit copy P1 plasmid prophage. Lysogens of λ-P1 chimeras in which the P1 fragment is EcoRI-5 fail to maintain P1 or P7 plasmids. In order to study the nature of this incompatibility, we isolated P1 mutants that overcome it. These mutants exhibit an elevated copy number. We provide evidence that the increased copy number results from a defect in a repressor of replication that can be furnished in trans by a chromosomally integrated P1, but not by EcoRI-5 itself. We, therefore, suggest that the incompatibility exerted by EcoRI-5 is not attributable to the represser of replication involved in the above copy control defect. Instead, it could be attributed to the presence of a DNA site required for proper plasmid partition at cell division. The elevated copy number of the P1 mutants would then enable them to compete favorably with the single copy of the cloned EcoRI fragment for a cellular component of the partition apparatus. Thus, incompatibility could be overcome.  相似文献   

6.
All genes critical for plasmid replication regulation are located on the plasmid rather than on the host chromosome. It is possible therefore that there can be copy-up “cheater” mutants. In spite of this possibility, low copy number plasmids appear to exist stably in host populations. We examined this paradox using a multilevel selection model. Simulations showed that, a slightly higher copy number mutant could out-compete the wild type. Consequently, another mutant with still higher copy number could invade the first invader. However, the realized benefit of increasing intra-host fitness was saturating whereas that of inter-host fitness was exponential. As a result, above a threshold, intra-host selection was overcompensated by inter-host selection and the low copy number wild type plasmid could back invade a very high copy number plasmid. This led to a rock-paper-scissor (RPS) like situation that allowed the coexistence of plasmids with varied copy numbers. Furthermore, another type of cheater that had lost the genes required for conjugation but could hitchhike on a conjugal plasmid, could further reduce the advantage of copy-up mutants. These sociobiological interactions may compliment molecular mechanisms of replication regulation in stabilizing the copy numbers.  相似文献   

7.
Mutations affecting a region of the Escherichia coli RNA polymerase have been isolated that specifically reduce the copy number of ColE1-type plasmids. The mutations, which result in a single amino acid alteration (G1161R) or a 41-amino acid deletion (Delta1149-1190) are located near the 3'-terminal region in the rpoC gene, which encodes the largest subunit (beta ') of the RNA polymerase. The rpoC deletion and the point mutation cause over 20- and 10-fold reductions, respectively, in the copy number of ColE1. ColE1 plasmid numbers are regulated by two plasmid-encoded RNAs: RNA II, which acts as a preprimer for the DNA polymerase I to start initiation of replication, and RNA I, its antisense inhibitor. Altered expression from the RNA I and RNA II promoters in vivo was observed in the RNA polymerase mutants. The RNA I/RNA II ratio is higher in the mutants than in the wild-type strain and this is most probably the main reason for the reduction in the ColE1 copy number in the two rpoC mutants.  相似文献   

8.
Linkage group XIX (also known as the UNI linkage group) in the green alga, Chlamydomonas reinhardtii, exhibits a number of unusual properties that have lead to the suggestion that it represents a basal body-associated chromosome. To begin a molecular analysis of this linkage group, we have identified DNA sequences from it and used them to determine the copy number of linkage group XIX within the cell. We find that linkage group XIX is present in the same copy number per cell as nuclear linkage groups in both haploid and diploid strains. We also find that the copy number of linkage group XIX is unchanged in mutants lacking basal bodies. We conclude that there is no convincing evidence that linkage group XIX localizes to the basal bodies of Chlamydomonas reinhardtii cells.  相似文献   

9.
We have characterized three copy number mutants of the plasmid pSC101. These mutations caused single amino acid substitutions at the 46th, 83rd and 115th codons in the rep gene and an increase in the copy number by 4- to 8-fold. Although the in vivo and in vitro repressor activities of these mutated Rep proteins were quite different from each other, the intracellular concentrations of the proteins were maintained at higher levels than the wild-type protein. It has been reported that excess amounts of Rep inhibit pSC101 replication (Ingmer and Cohen, 1993). This inhibitory activity of Rep was markedly decreased in all three mutants. When both the wild-type and one of the mutated rep genes were retained in the same plasmids, the copy number of these plasmids was decreased compared with plasmids retaining a single mutated rep gene. These results support the theory that the inhibitory activity of Rep for its own replication plays an important role in copy number regulation.  相似文献   

10.
11.
We have isolated a gene that can encode yeast tRNA(CAGGln). When present on a multicopy plasmid, this gene suppresses the phenotype of a number of amber mutants, but has no effect on the ocher mutants tested. We therefore conclude that the anticodon CUG in tRNA(CAGGln) can decode the amber codon UAG by G-U mispairing, possibly by wobble base-pairing in the first codon position. This represents the second example we have observed in this laboratory of nonsense suppression in yeast by natural tRNA(Gln), involving G-U mispairing in the first codon position. Replacing the genomic copy of the cloned gene with a disrupted tRNA gene results in recessive lethality in heterozygous diploids and is lethal to haploid cells. This lethality can be rescued by transformation of cells with a single copy plasmid containing the tRNA(CAGGln) gene. Thus, the gene encoding tRNA(CAGGln) is apparently essential for viability in yeast, suggesting that it is normally present as a single copy gene.  相似文献   

12.
A Rasooly  P Z Wang    R P Novick 《The EMBO journal》1994,13(21):5245-5251
The Staphylococcus aureus rolling circle plasmid pT181 regulates its replication by controlling the synthesis of its initiator protein RepC. RepC is inactivated during pT181 replication by the addition of an oligodeoxynucleotide, giving rise to a new form, RepC*. We analyzed RepC and RepC* in four classes of mutants: plasmid copy number mutants, two classes of RepC mutants affecting different portions of the protein and oriC (origin) mutants. We have found that in the cell with wild-type RepC there are similar relative amounts of RepC and RepC*, regardless of copy number, and that the conversion of RepC to RepC* is replication dependent. Genetic and biochemical evidence is presented that RepC functions as a dimer and that during replication the RepC homodimer is converted to the RepC/RepC* heterodimer.  相似文献   

13.
14.
We have isolated and characterized cop, copts, and repam mutants of plasmid mini-F after in vitro mutagenesis with hydroxylamine. cop mutants exhibit a copy number of about 10 per cell. The copts mutants are cold-sensitive and have, at 25 degrees C, a copy number of about 30-40 copies per cell, which drops to 4 copies at 42 degrees C. The cop and repam mutations affect the 29-kDa E protein. The Copts phenotype results from the simultaneous occurrence of two mutations, a cop mutation in the E protein and a temperature-dependent mutation (termed ecp) enhancing the Cop phenotype at low temperature. The latter new type of mutation is located within the DNA region 44.1-44.85F. Complementation experiments with plasmid cointegrates show that the wild-type gene is dominant over the cop allele. The nucleotide sequences of the cop and the repam mutations have been determined.  相似文献   

15.
Serban Iordanescu 《Plasmid》1983,10(2):130-137
A chromosomal mutation leading to an important increase in the copy number of plasmid pT181 and its derivatives has been isolated from Staphylococcus aureus strain 8325. The amplification effect in the mutant strain SA1350 was found to be specific for plasmids of the Inc3 group, to which belongs pT181. There are some other differences in the behavior of Inc3 plasmids between SA1350 and 8325, including stable maintenance in SA1350 at high copy number of temperature-sensitive replication mutants at restrictive temperatures, and altered incompatibility properties. Derivatives of SA1350 carrying only Inc3 plasmid mutants with high copy numbers (Cop mutants) could not be obtained, suggesting a lethal runaway plasmid replication in this situation. SA1350 expressed also a temperature-sensitive phenotype. The relationship of this character to the plaC1 mutation determining the amplification of Inc3 plasmids has not yet been elucidated.  相似文献   

16.
17.
A novel type of E. coli mutants with increased chromosomal copy number   总被引:9,自引:0,他引:9  
We have isolated E. coli mutants which can grow at 30 degrees C but not at 42 degrees C and are able to harbor the oriC plasmid (minichromosome) at a higher copy number than the parental wild-type strain at the permissive temperature. The mutants were found to contain higher amounts of chromosomal DNA per mg protein than the wild-type, whether or not they harbor the plasmid. Experimental results suggest that the higher amount of chromosomal DNA is due to a higher copy number of chromosomes and not to a larger amount of DNA per chromosome. These properties in each of the mutants are caused by a single mutation at the rpoB or rpoC gene that code for the beta or beta' subunit of RNA polymerase, respectively. The mutations are thought to affect the regulation of replication of oriC-bearing replicons, that is, the E. coli chromosome and oriC plasmids, but not the miniF plasmid.  相似文献   

18.
A gene, pcnB, affecting the copy number of ColE1-related plasmids has been cloned and mapped to 3.6 min on the Escherichia coli chromosome between panD and fhu. The gene encodes a previously undescribed 48 kD protein. Several independently isolated mutants exhibiting the same phenotype, reduced copy number, have been shown to be pcnB-.  相似文献   

19.
ColE1 copy number mutants.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

20.
S B Lee  J E Bailey 《Plasmid》1984,11(2):166-177
A mathematical model based on the molecular control mechanisms for lambda dv plasmid replication in a single Escherichia coli cell has been applied to simulate replication of mutant lambda dv plasmids. Model simulations of changes in repressor level and copy number resulting from mutations in the promoter-operator PROR region are consistent with experimental data. Calculated effects on lambda dv plasmid copy number of oligomer formation and of alternations in termination efficiency at tR1 also agree with experiment. The model has been employed to simulate the influence of cro mutants and of cro and tR1 double mutants on copy number and stable maintenance of lambda dv plasmid copy number. The genetic structure included in formulation of the replicon model provides a framework for relating changes in specific genetic loci on the plasmid with resulting alterations in host-plasmid system function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号