首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study employed bilateral, intraventricular injections of 6-hydroxydopamine (6-HDA) to examine the effects of monoamine depletion on Pavlovian conditioning of the rabbit's nictitating membrane response. 6-HDA produced dose-dependent and highly correlated decreases in the rate of acquisition of conditioned responses and in the telencephalic content of 5-HT, DA, and NE. At the highest dose of 6-HDA (1340 g), 5-HT, DA, and NE were reduced by 42, 48, and 89%, respectively, and the number of trials required to achieve criterion acquisition was increased by 123%. Control experiments established that the highest dose of 6-HDA: 1) had no effect on the unconditioned nictitating membrane reflex; 2) had no effect on the threshold of the conditioned stimulus for eliciting conditioned responses; and 3) produced only a small, less than 5%, decrease in nonassociative responding. It was concluded that decreases in 5-HT, DA, and NE can impair associative learning without altering sensory or motor function.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

2.
Five experiments were conducted in which the onset of a tone conditioned stimulus (CS) preceded the unconditioned stimulus (US) by 500 ms. Across experiments, the offset of the CS was extended past the offset of the US by values ranging from 0 ms to 40000 ms. Extensions of the CS of 2000 ms or greater produced acquisition of a conditioned response (CR) that was as fast or faster than in the no-extension condition (0 ms). While extension of a forward tone CS after the US enhanced excitatory conditioning, insertion of another CS (light) in a purely backward relationship with the US passed only a retardation test, indicative of latent inhibition, and not a summation test needed for conditioned inhibition. The results add to the evidence that excitatory and inhibitory processes are both engaged following US offset. Alternative theories of CS processing are discussed.  相似文献   

3.
This paper investigates the possible role of neuroanatomical features in Pavlovian conditioning, via computer simulations with layered, feedforward artificial neural networks. The networks’ structure and functioning are described by a strongly bottom-up model that takes into account the roles of hippocampal and dopaminergic systems in conditioning. Neuroanatomical features were simulated as generic structural or architectural features of neural networks. We focused on the number of units per hidden layer and connectivity. The effect of the number of units per hidden layer was investigated through simulations of resistance to extinction in fully connected networks. Large networks were more resistant to extinction than small networks, a stochastic effect of the asynchronous random procedure used in the simulator to update activations and weights. These networks did not simulate second-order conditioning because weight competition prevented conditioning to a stimulus after conditioning to another. Partially connected networks simulated second-order conditioning and devaluation of the second-order stimulus after extinction of a similar first-order stimulus. Similar stimuli were simulated as nonorthogonal input-vectors.  相似文献   

4.
Abstract. Temperature changes can be especially threatening for ectotherms, such as Drosophila melanogaster (Diptera: Drosophilidea Meigen, 1830 ), and in this study we tested whether flies can associate olfactory stimuli with a sudden drop in temperature. Such Pavlovian conditioning would allow them to make appropriate behavioural and/or physiological responses in the future. We found that exposing individual flies to one of two odours in the presence of a sudden drop in temperature resulted in Pavlovian conditioning with flies subsequently avoiding the odour paired with cold. The characteristics of Pavlovian conditioning in flies were comparable to those observed for mammalian species. Specifically, the strength of conditioning increased with increasing intensity of the cold and decreased as the time interval between the olfactory stimulus (CS) and cold (US) was lengthened. Finally, the order in which CS and US were presented affected the strength of conditioning. Learning was observed when the CS preceded US and when the US immediately preceded the CS, but not when the CS preceded the US by 30 s or more. These results provide further evidence for learning in individual flies, and confirm that Pavlovian conditioning is a general mechanism used by organisms to obtain information about their environment.  相似文献   

5.
Subjects were conditioned/extinguished under four experimental conditions using either MSH/ACTH 4–10 (A) or diluent (D): D/D, D/A, A/D, and A/A. The major question investigated was whether or not the peptide has an effect on this classically-conditioned behavior similar to that reported for instrumental conditioning paradigms. The results indicated that it does not. An effect was seen on performance, not on learning or attentional processes. Animals treated with the peptide performed more poorly (i.e., displayed fewer conditioned responses) during both acquisition and extinction. In addition, there was an apparent residual effect of the peptide that lasted 24 but not 48 hours.  相似文献   

6.
Membrane vesicles from pigeon erythrocytes show a rapid, ATP-dependent accumulation of 45Ca2+. Ca2+ accumulation ratios greater than or approximately equal to 104 are readily attained. For ATP-dependent Ca2+ uptake, V is 1.5 mmol · 1?1 · min?1 at 27°C (approx. 0.9 nmol · mg?1 protein · min?1), [Ca2+]12 is 0.18 μM, [ATP]12 is 30–60 μM, the Ca2+ uptake rate depends on [Ca2+]2 and the dependence of uptake rate on ATP concentration implies strong ATP-ATP cooperativity. The Arrhenius activation energy is 19.1 ± 1.4 kcal/mol and the pH optimum is approx. 6.9.  相似文献   

7.
《Current biology : CB》2021,31(18):4163-4171.e3
  1. Download : Download high-res image (124KB)
  2. Download : Download full-size image
  相似文献   

8.
The present article develops quantitative behavioral and neurophysiological predictions for rabbits trained on an air-puff version of the trace-interval classical conditioning paradigm. Using a minimal hippocampal model, consisting of 8,000 primary cells sparsely and randomly interconnected as a model of hippocampal region CA-3, the simulations identify conditions which produce a clear split in the number of trials individual animals should need to learn a criterion response. A trace interval that is difficult to learn, but still learnable by half the experimental population, produces a bimodal population of learners: an early learner group and a late learner group. The model predicts that late learners are characterized by two kinds of CA-3 neuronal activity fluctuations that are not seen in the early learners. As is typical in our minimal hippocampal models, the off-rate constant of the N-methyl-d-aspartate receptor receptor gives a timescale to the model that leads to a temporally quantifiable behavior, the learnable trace interval.  相似文献   

9.
Pigeon erythrocyte membrane was solubilized partially, but relatively unselectively by Triton X-100. Vesicles were reconstituted from mixtures of Triton-solubilized membrane and lipid (phosphatidylcholine plus phosphatidylethanolamine plus cholesterol) by addition of bovine high-density lipoprotein. This efficiently removed the Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electropherograms of reconstituted vesicles showed band patterns resembling those of the original membrane. The reconstituted vesicles showed ATP-dependent active accumulation of 45Ca2+. ATP-dependent 45Ca2+ uptake by the reconstituted vesicles resembled the corresponding activity of the original membrane vesicles; in both preparations the Ca2+ uptake rate depended on the square of the Ca2+ concentration and had similar [Ca2+]12 values, 0.16 μM and 0.18 μM, respectively.  相似文献   

10.
Obsessive‐compulsive disorder (OCD) is characterized by obsessive thinking, compulsive behavior and anxiety, and is often accompanied by cognitive deficits. The neuropathology of OCD involves dysregulation of cortical‐striatal circuits. Similar to OCD patients, SAPAP3 knockout mice 3 (SAPAP3?/?) exhibit compulsive behavior (grooming), anxiety and dysregulated cortical‐striatal function. However, it is unknown whether SAPAP3?/? display cognitive deficits and how these different behavioral traits relate to one another. SAPAP3?/? and wild‐type (WT) littermates were trained in a Pavlovian conditioning task pairing visual cues with the delivery of sucrose solution. After mice learned to discriminate between a reward‐predicting conditioned stimulus (CS+) and a non‐reward stimulus (CS?), contingencies were reversed (CS+ became CS? and vice versa). Additionally, we assessed grooming, anxiety and general activity. SAPAP3?/? acquired Pavlovian approach behavior similarly to WT, albeit less vigorously and with a different strategy. However, unlike WT, SAPAP3?/? were unable to adapt their behavior after contingency reversal, exemplified by a lack of re‐establishing CS+ approach behavior (sign tracking). Surprisingly, such behavioral inflexibility, decreased vigor, compulsive grooming and anxiety were unrelated. This study shows that SAPAP3?/? are capable of Pavlovian learning, but lack flexibility to adapt associated conditioned approach behavior. Thus, SAPAP3?/? not only display compulsive‐like behavior and anxiety, but also cognitive deficits, confirming and extending the validity of SAPAP3?/? as a suitable model for the study of OCD. The observation that compulsive‐like behavior, anxiety and behavioral inflexibility were unrelated suggests a non‐causal relationship between these traits and may be of clinical relevance for the treatment of OCD.  相似文献   

11.
A nondisintegrating, controlled release, asymmetric membrane capsular system of flurbiprofen was developed and evaluated for controlled release of the drug to overcome some of its side effects. Asymmetric membrane capsules were prepared using fabricated glass mold pins by phase inversion process. The effect of different formulation variables was studied based on 23 factorial design; namely, level of osmogen, membrane thickness, and level of pore former. Effects of polymer diffusibility and varying osmotic pressure on drug release were also studied. Membrane characterization by scanning electron microscopy showed an outer dense region with less pores and an inner porous region for the prepared asymmetric membrane. Differential scanning calorimetry studies showed no incompatibility between the drug and the excipients used in the study. In vitro release studies for all the prepared formulations were done (n=6). Statistical test (Dunnett multiple comparison test) was applied for in vitro drug release atP>.05. The best formulation closely corresponded to the extra design checkpoint formulation by a similarity (f2) value of 92.94. The drug release was independent of pH but dependent on the osmotic pressure of the dissolution medium. The release kinetics followed the Higuchi model and the mechanism of release was Fickian diffusion. Published: July 7, 2006  相似文献   

12.
SOMMER is a publicly available, Java-based toolbox for training and visualizing two- and three-dimensional unsupervised self-organizing maps (SOMs). Various map topologies are implemented for planar rectangular, toroidal, cubic-surface and spherical projections. The software allows for visualization of the training process, which has been shown to be particularly valuable for teaching purposes. Spread of a spherical self-organizing map (SOM) in a three-dimensional data space  相似文献   

13.
The light-driven photocycle of rhodopsin begins the photoreceptor cascade that underlies visual response. In a sequence of events, the retinal covalently attached to the rhodopsin protein undergoes a conformational change that communicates local changes to a global conformational change throughout the whole protein. In turn, the large-scale protein change then activates G-proteins and signal amplification throughout the cell. The nature of this change, involving a coupling between a local process and larger changes throughout the protein, may be important for many membrane proteins. In addition, functional work has shown that this coupling occurs with different efficiency in different lipid settings. To begin to understand the nature of the efficiency of this coupling in different lipid settings, we present a molecular dynamics study of rhodopsin in an explicit dioleoyl-phosphatidylcholine bilayer. Our system was simulated for 40 ns and provides insights into the very early events of the visual cascade, before the full transition and activation have occurred. In particular, we see an event near 10 ns that begins with a change in hydrogen bonding near the retinal and that leads through a series of coupled changes to a shift in helical tilt. This type of event, though rare on the molecular dynamics time-scale, could be an important clue to the types of coupling that occur between local and large-scale conformational change in many membrane proteins.  相似文献   

14.
Pretreatment of pigeon erythrocyte membrane vesicles with amino acids, ATP, GTP, Pi and some other simple cell constituents (singly and in combination) causes an increase in ATP-dependent Ca2+-uptake activity of vesicles upon subsequent incubation with 45Ca2+ after removal of the above agents from the ‘i’ face. Amino acids augment the stimulation by all stimulatory agents and are required for stimulation by Pi. The effects of amino acids, ATP, GTP and Pi all occur at physiological concentrations. Many if not all of the effects of the mixture of amino acids that occur naturally in the cells can be accounted for by the group transported by the ‘ASC’ transport system of Christensen (Christensen H.N. (1975) Biological Transport, 2nd edn., W.A. Benjamin, Inc., Reading, MA), but not by any single amino acid at its physiological concentration. The effects of ATP and GTP are not mimicked by their non-hydrolysable β, γ-imido analogues nor by the corresponding 3′, 5′-cyclic monophosphates. None of the effects described appears to involve calmodulin. We suggest that amino acid transport plays a role in metabolic regulation through effects on cell [Ca2+]. Analogous effects on cell [Ca2+] may be involved in the action of the many hormones which augment amino acid accumulation by the ‘A’ amino acid transport system.  相似文献   

15.
Human CC-chemokine receptor 8 (CCR8) is a crucial drug target in asthma that belongs to G-protein-coupled receptor superfamily, which is characterized by seven transmembrane helices. To date, there is no X-ray crystal structure available for CCR8; this hampers active research on the target. Molecular basis of interaction mechanism of antagonist with CCR8 remains unclear. In order to provide binding site information and stable binding mode, we performed modeling, docking and molecular dynamics (MD) simulation of CCR8. Docking study of biaryl-ether-piperidine derivative (13C) was performed inside predefined CCR8 binding site to get the representative conformation of 13C. Further, MD simulations of receptor and complex (13C-CCR8) inside dipalmitoylphosphatidylcholine lipid bilayers were performed to explore the effect of lipids. Results analyses showed that the Gln91, Tyr94, Cys106, Val109, Tyr113, Cys183, Tyr184, Ser185, Lys195, Thr198, Asn199, Met202, Phe254, and Glu286 were conserved in both docking and MD simulations. This indicated possible role of these residues in CCR8 antagonism. However, experimental mutational studies on these identified residues could be effective to confirm their importance in CCR8 antagonism. Furthermore, calculated Coulombic interactions represented the crucial roles of Glu286, Lys195, and Tyr113 in CCR8 antagonism. Important residues identified in this study overlap with the previous non-peptide agonist (LMD-009) binding site. Though, the non-peptide agonist and currently studied inhibitor (13C) share common substructure, but they differ in their effects on CCR8. So, to get more insight into their agonist and antagonist effects, further side-by-side experimental studies on both agonist (LMD-009) and antagonist (13C) are suggested.  相似文献   

16.
Ashish Shelar  Manju Bansal 《Proteins》2014,82(12):3420-3436
α‐helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α‐helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C‐termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α‐helices in a high‐resolution dataset of integral α‐helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C‐termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near‐helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. Proteins 2014; 82:3420–3436. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
The acquired freezing tolerance of jack pine seedlings (Pinus banksiana Lamb.) conditioned at low nonfreezing temperatures and short photoperiods was determined by comparison of seedling survival to that of nonconditioned (control) seedlings following exposure to ?5 and ?10°C. Compared to that of controls, survival of conditioned seedlings was markedly increased following exposure to freezing temperatures. A 1-week conditioning treatment significantly increased the survival of the seedlings after exposure to ?5°C, but was less effective on seedlings exposed to ?10°C. Conditioning periods of 2 and 4 weeks resulted in higher survival of seedlings exposed to both ?5 and ?10°C. The changes of two root-plasma-membrane-associated enzyme activities, H+-ATPase and NADH-dependent ferricyanide reductase, were studied in enriched plasma membrane fractions during conditioning and after freezing. Post-freezing activities of both enzymes were enhanced by conditioning at low temperatures and short photoperiods. These changes may be related to the increased frost hardiness also induced by conditioning.  相似文献   

18.
Studies on cell signaling pay more attention to spatial dynamics and how such diverse organization can relate to high order of cellular capabilities. To overview the specificity of cell signaling, we integrated human receptome data with proteome spatial expression profiles to systematically investigate the specificity of receptors and receptor-triggered transduction networks across 62 normal cell types and 14 cancer types. Six percent receptors showed cell-type-specific expression, and 4% signaling networks presented enriched cell-specific proteins induced by the receptors. We introduced a concept of "response context" to annotate the cell-type dependent signaling networks. We found that most cells respond similarly to the same stimulus, as the "response contexts" presented high functional similarity. Despite this, the subtle spatial diversity can be observed from the difference in network architectures. The architecture of the signaling networks in nerve cells displayed less completeness than that in glandular cells, which indicated cellular-context dependent signaling patterns are elaborately spatially organized. Likewise, in cancer cells most signaling networks were generally dysfunctional and less complete than that in normal cells. However, glioma emerged hyper-activated transduction mechanism in malignant state. Receptor ATP6AP2 and TNFRSF21 induced rennin-angiotensin and apoptosis signaling were found likely to explain the glioma-specific mechanism. This work represents an effort to decipher context-specific signaling network from spatial dimension. Our results indicated that although a majority of cells engage general signaling response with subtle differences, the spatial dynamics of cell signaling can not only deepen our insights into different signaling mechanisms, but also help understand cell signaling in disease.  相似文献   

19.
In this research, for the first time, molecular dynamics (MD) method was used to simulate aspirin and ibuprofen at various concentrations and in neutral and charged states. Effects of the concentration (dosage), charge state, and existence of an integral protein in the membrane on the diffusion rate of drug molecules into lipid bilayer membrane were investigated on 11 systems, for which the parameters indicating diffusion rate and those affecting the rate were evaluated. Considering the diffusion rate, a suitable score was assigned to each system, based on which, analysis of variance (ANOVA) was performed. By calculating the effect size of the indicative parameters and total scores, an optimum system with the highest diffusion rate was determined. Consequently, diffusion rate controlling parameters were obtained: the drug–water hydrogen bond in protein-free systems and protein–drug hydrogen bond in the systems containing protein.  相似文献   

20.
Fischer N  Kandt C 《Proteins》2011,79(10):2871-2885
Powered by proton-motive force, the inner membrane translocase AcrB is the engine of the AcrAB-TolC efflux pump in Escherichia coli. As proton conduction in proteins occurs along hydrogen-bonded networks of polar residues and water molecules, knowledge of the protein-internal water distribution and water-interacting residues allows drawing conclusions to possible pathways of proton conduction. Here, we report a series of 6× 50 ns independent molecular dynamics simulations of asymmetric AcrB embedded in a phospholipid/water environment. Simulating each monomer in its proposed protonation state, we calculated for each trans-membrane domain the average water distribution, identified residues interacting with these waters and quantified each residue's frequency of water hydrogen bond contact. Combining this information we find three possible routes of proton transfer connecting a continuously hydrated region of known key residues in the TMD interior to bulk water by one cytoplasmic and up to three periplasm water channels in monomer B and A. We find that water access of the trans-membrane domains is regulated by four groups of residues in a combination of side chain re-orientations and shifts of trans-membrane helices. Our findings support a proton release event via Arg971 during the C intermediate or in the transition to A, and proton uptake occurring in the A or B state or during a so far unknown intermediate in between B and C where cytoplasmic water access is still possible. Our simulations suggest experimentally testable hypotheses, which have not been investigated so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号