首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
The objective of this work was to study the effect of early weaning on circadian rhythm and the behavioral satiety sequence in adult rats. Male Wistar rat pups were weaned for separation from the mother at 15 (D15), 21 (D21) and 30 (D30) days old. Body weight and food intake was measured every 30 days until pups were 150 days old. At 90 days of age, the circadian rhythm of food intake was evaluated every 4 h for three days. Behavioral satiety was evaluated at 35 and 100 days of age. This work demonstrated that body weight and food intake were not altered, but the behavioral satiety sequence demonstrated that the D15 group delayed satiety compared with the D30 group at 100 days of age. In the circadian rhythm of the food intake study, early weaning (D15) changed food intake in the intermediary period of the light phase and in the intermediary period of the dark phase. In conclusion, our study showed that early weaning may alter the feeding behavior mainly in relation to satiety and the circadian rhythm of feeding. It is possible that the presence of other environmental stimuli during early weaning can cause hyperphagia and deregulate the mechanisms of homeostasis and body weight control. This study supports theories that depict insults during early life as determinants of chronic diseases.  相似文献   

2.
Postnatal early overnutrition (EO) is a risk factor for future obesity and metabolic disorders. Rats raised in small litters (SLs) develop overweight, hyperphagia, hyperleptinemia, hyperinsulinemia and hypertension when adults. As obesity is related to hyperleptinemia, leptin resistance and metabolic syndrome, we aimed to investigate body composition, plasma hormone levels, glucose tolerance and the leptin signaling pathway in hypothalamus from early overfed animals at weaning and adulthood. To induce postnatal EO, we reduced litter size to three pups/litter (SL), and the groups with normal litter size (10 pups/litter) were used as control. Rats had free access to standard diet and water postweaning. Body weight and food intake were monitored daily, and offspring were killed at 21 (weaning) and 180 days old (adulthood). Postnatal EO group had higher body weight and total and visceral fat mass at both periods. Lean mass and serum high-density lipoprotein cholesterol (HDL-C) were higher at 21 days and lower at 180 days. Small litter rats presented higher levels of globulins at both periods, while albumin levels were higher at weaning and lower at adulthood. There was higher leptin, insulin and glucose serum concentrations at 21 days old, while no glucose intolerance was observed in adulthood. Leptin signaling pathway was unaffected at weaning. However, postnatal EO induced lower JAK2 and p-STAT3, and higher SOCS3 expression in adult animals, indicating central leptin resistance in adulthood. In conclusion, postnatal EO induces obesity, higher total and visceral fat mass, lower HDL-C and central leptin resistance in adult life.  相似文献   

3.
To investigate the relationship between development of obesity and the small intestinal functions two experimental models of male Wistar rats were used in the present work: 1) early postnatally overfed rats, nursed from birth to weaning in small litters (SL, 4 pups/nest), and 2) neonatally monosodium glutamate treated rats (MSG 2 mg/g b.w. administered s.c. for 4 days after birth) submitted to the same early nutritional manipulation. After weaning, all animals had free access to a standard pellet diet and at 40 and 80 days of age their body weight, body fat content and food consumption as well as changes of the brush-border-bound duodenal and jejunal alkaline phosphatase (AP) activity were compared with parameters of the offsprings raised under normal feeding conditions (NL, 8 pups/nest). At 40 and 80 days of age the postnatally overfed pups from SL nests became heavier, displayed a significantly increased epididymal plus retroperitoneal fat pad weight (P<0.01) and significantly higher AP activity in both segments of the small intestine (P<0.01) in comparison with rats nursed in NL nests, although their mean daily food intake did not differ from that of non-obese rats during the postweaning periods examined. In contrast, the same treatment of MSG rats had only a small effect on late appearance of obesity, i.e. in early postnatally overfed and normally fed MSG rats a similar pattern of body weight, food intake, adiposity and AP activity was found after weaning. The effect of MSG-treatment was also accompanied by the appearance of normophagia, hypophagia and stunted growth on day 40 and day 80, respectively. Moreover, the size of fat depots and the increase of brush-border-bound AP activity in MSG rats belonging to the SL and NL groups was quantitatively similar to the values size of these parameters observed in SL obese rats subjected to early postnatal overnutrition. These results indicate that postnatal nutritional experience (overnutrition) may represent a predisposing factor in control rats from small litters for the development of obesity in later life. Permanently increased small intestinal AP activity observed after weaning in both models of obesity when hyperphagia is not present suggest that these functional changes and associated alterations in food digestion could be a component of regulatory mechanisms contributing to the maintenance of their elevated body fat weight.  相似文献   

4.
To investigate the relationship between early nutritional experience, ontogeny of the small intestinal functions and predisposition to obesity development, the following experimental models of male Sprague-Dawley rats were used: 1) rats in which the quantity of nutrition was manipulated from birth to weaning (day 30) by adjusting the number of pups in the nest to 4 (SL), 10 (NL) and 16 pups (LL) and 2) littermates of SL, NL and LL rats fed either a standard or a hypercaloric diet from days 80 to 135 of age. The overfed SL pups were overweight after day 15 and became permanently obese, whereas the underfed smaller LL pups, due to accelerated growth and enhanced food intake from day 30 to day 35, attained a body fat level that did not differ from normally fed NL rats. Moreover, a significantly increased duodenal and jejunal alkaline phosphatase (AP) activity was found in SL and LL rats and these acquired somatic and intestinal characteristics persisted from weaning throughout life. Eight weeks of high-energy diet feeding elicited a similar pattern of intestinal response in SL and LL rats that was clearly different from NL rats. Despite energy over-consumption in these three groups, both SL and LL rats still displayed enhanced AP activity and showed a significant increase in protein/DNA ratio accompanied with a significant body fat accretion. These results indicate that the postnatally acquired small intestinal changes induced by over- and undernutrition could be involved in the similar predisposition to obesity risk in later life when caloric density of the diet is raised.  相似文献   

5.
Objective: To determine whether treatment of rat dams with oleoyl‐estrone (OE) has an effect on the offspring's long‐term response to diet restriction during lactation. Methods and Procedures: Control, OE‐treated, and diet‐restricted dams were treated up to day 15 of lactation. Changes in food intake and body weight were recorded for dams and their pups. After weaning, pups received a 4‐week standard diet followed by a 4‐week period of high‐fat diet. Lipid, protein, and energy content of pups plus energy intake and efficiency. Serum metabolites (glucose, urea, and cholesterol) and serum hormones (adiponectin, leptin, insulin, and sexual hormones). Results: Neither pups from dams in the OE‐treated nor in the diet‐restricted group showed significant changes in weight, though these two groups ingested 79% of food ingested by controls. At weaning, the pups from OE‐treated rats were smaller than those of the control or diet‐restricted groups. These pups maintained the differences in size and lipid content during the 4‐week standard‐diet period, whereas pups from diet‐restricted dams showed a sharp decrease in their lipid content. During the 4 weeks of high‐fat diet, the male offspring from OE‐treated dams increased the difference in lipid content in relation to the pups from control dams whereas in females the differences decreased. Female offspring from diet‐restricted dams showed the most marked changes in metabolite and hormone levels in relation to controls. Discussion: Treatment of lactating dams with OE programs the metabolic response of their offspring to resist the challenge of a high‐fat diet that would lead to obesity in adulthood.  相似文献   

6.
The relationship was evaluated between early nutritional experiences, the intestinal microflora and the small intestinal functions in the mechanism of predisposition to obesity development. Male Sprague-Dawley rats were used in which the quantity of nutrition was manipulated from birth to weaning (day 30) by adjusting the number of pups in the nest to 4 small litters (SL) and 10 normal litters (NL) and fed a standard diet from days 30 to 40 of age. After 40 d, the postnatally overfed SL pups became heavier, displayed significantly enhanced adiposity, body mass gain and food intake as well as a significantly higher jejunal alkaline phosphatase and maltase activity than in rats nursed in NL nests. The effect of different early nutrition was also accompanied by the appearance of significantly decreased Bacteroides and significantly increased enterococci and lactobacilli of obese rats than in lean NL rats. The amounts of Bacteroides were negatively correlated with fat pad mass, body mass, body-mass gain and food intake whereas enterococci and lactobacilli were correlated positively with the same parameters. Our results demonstrate that postnatal nutritional experience may represent a predisposing factor influencing ontogeny of small intestine function and development of intestinal microbial communities. The acquired changes and associated alterations in food digestion could be a component of regulatory mechanisms contributing to the development of obesity and its maintenance in later life.  相似文献   

7.
K Vaswani  G A Tejwani  S Mousa 《Life sciences》1983,32(17):1983-1996
The purpose of this study was to explore the effect of acute mild stress (12–48 hour food and water deprivation) and acute severe stress (12 hour food and water deprivation followed by 10 min swim in water at 4°) on the intake of different isocaloric dietary regimes. Each group of experimental animals was given only one particular diet. Rats subjected to mild stress showed very little preference of dietary regimes. When the food intake was measured during 3 hour period, following 48 hours of fasting, animals showed 2 to 3 fold increase in the food and water intake but no particular dietary preference. However, when rats were subjected to severe stress, there was an increase in the food intake of 154% (control diet); 174% (high-carbohydrate diet); 310% (high protein diet) and 423% (high fat diet) compared to animals subjected to mild stress. In terms of the absolute quantity of food, the animals subjected to severe stress ate more high-fat diet than any other diet; the consumption of high fat diet was 142% more than high-protein diet, 180% more than control diet and 258% more than high carbohydrate diet. Animals subjected to severe stress and given high-carbohydrate and high fat diet also showed 80% increase in the water intake. Prior administration of naloxone (1 mg/kg body weight, i.p.) reduced the stress induced increase in the intake of food and water. Naloxone inhibited the intake of high-fat diet more than any other diet. The ability of naloxone to block the increase in the intake of high-fat diet, and the reported increase in the concentration of β-endorphin in the different regions of brain of the animals subjected to the cold swim, suggest that endogenous opioid system in body is activated during stress. An activation of the endogenous opioid system leads to a preferential increase in the intake of palatable foods.  相似文献   

8.
This study was designed to monitor the developmental changes in insulinemia and lipogenic enzyme activities in both inguinal adipose tissue and liver during suckling (7, 9, 14, and 17 days of age) and weaning (22 and 30 days of age) on to either a low-fat or a high-fat diet in lean (Fa/fa) and obese (fa/fa) rats. Tissues were removed through surgery and genotypes were retrospectively determined. During suckling, there was no difference in liver enzyme activities between the two groups. In contrast, adipose tissue fatty acid synthetase was increased by 50% and citrate cleavage enzyme and malic enzyme by 30% by 9 days of age. By 17 days of age, there was a threefold elevation in these enzyme activities and 6-phosphogluconic dehydrogenase and a twofold increase in glucose-6-phosphate dehydrogenase per inguinal fat pad in fa/fa versus Fa/fa. Consistent with these results, fat pad weight was increased by 20%, 50%, and 100% at 9, 14, and 17 days of age, respectively, in obese as compared to lean pups. However only by 17 days of age could a slight but significant increase in insulin level be detected in obese pups. Enlargement of inguinal fat pad accelerated after weaning on to a low-fat diet and still more after weaning on to a high-fat diet. Weaning on to a low-fat diet elicited an induction of hepatic lipogenic enzymes two or three times greater in fa/fa than in lean pups, while weaning on to a high-fat diet blunted the differences between genotypes. The lipogenic enzyme activities displayed per total inguinal fat were three to ten times greater in obese than in lean pups, regardless of the diet. However, adipose tissue lipogenic enzyme activities were much lower after weaning on to a high-fat than on to a low-fat diet in obese pups. The high-fat diet was as effective as the low-fat diet in triggering hyperinsulinemia in obese pups. The increased adipose tissue capacity for lipogenesis, starting during the suckling period, could play an important etiologic role in the development and maintenance of obesity in the Zucker rat.-Bazin, R., and M. Lavau. Development of hepatic and adipose tissue lipogenic enzymes and insulinemia during suckling and weaning on to a high-fat diet in Zucker rats.  相似文献   

9.
Although many feeding protocols induce obesity, few use multiple foods to analyze diet selection within a single group of animals. To this end, we describe a protocol using time-limited access to a dessert that induces hyperphagia and body weight gain while allowing simple analysis of diet selection. Female retired breeder Sprague-Dawley rats were provided with ad libitum access to standard moist chow (1.67 kcal/g) and daily 8-h nocturnal access to either a sugar gel (SG; 0.31 kcal/g) or sugar fat whip (SFW; 7.35 kcal/g) for 15 days, and food intake and body weight were measured daily. Rats given SFW reduced moist chow intake but not enough to compensate for the large amount of calories consumed from SFW, and thus gained weight. We use this SFW overconsumption protocol to investigate the hypothesis that cannabinoid (CB)1 receptor antagonists reduce caloric intake by selectively decreasing consumption of palatable foods. In two experiments, female retired breeder Sprague-Dawley rats were injected with either Rimonabant (1 mg/kg ip) or vehicle (equal parts polyethylene glycol and saline, 1 ml/kg ip) for 7 days, or one of three doses of AM251 (0.3, 1.0, or 3.0 mg/kg ip), or vehicle for 15 days; food intake and body weight were measured daily. Both Rimonabant and AM251 decreased 24-h caloric intake, but the reduction was specific to a decrease in SFW consumption. This supports the hypothesis that these CB1 receptor antagonists impact feeding by modulating the perception of palatability.  相似文献   

10.
The nutritional effects of high-fat diets have been extensively studied in laboratory animals, but as yet few experiments have examined the feeding response of animals to newly developed fat substitutes. The present study used commercially available no-fat (0% fat, 92% carbohydrate) and high-fat (41% fat, 54% carbohydrate) cake to determine the effects of fat substitutes on food preference and caloric intake in rats. The first experiment showed that nondeprived rats found the high-fat and no-fat cakes equally palatable and highly preferred to lab chow. Food deprived rats, however, preferred the high-fat cake to the no-fat cake, which may be related to its higher caloric density. In the second experiment, rats fed high-fat cake, in addition to chow, for 30 days consumed more calories and gained more weight than did rats fed no-fat cake and chow. The no-fat cake group, however, overate and gained more weight than chow-only controls. The hyperphagic response to the no-fat cake can be attributed to its carbohydrate content, moisture, and high palatability. Thus, removing fat from the cake reduced, but did not eliminate, its obesity-promoting effect. Obviously, low-fat foods must be consumed in moderation if used for weight control.  相似文献   

11.
Leptin reduces body fat selectively, sparing body protein. Accordingly, during chronic leptin administration, food intake is suppressed, and body weight is reduced until body fat is depleted. Body weight then stabilizes at this fat-depleted nadir, while food intake returns to normal caloric levels, presumably in defense of energy and nutritional homeostasis. This model of leptin treatment offers the opportunity to examine controls of food intake that are independent of leptin's actions, and provides a window for examining the nature of feeding controls in a "fatless" animal. Here we evaluate macronutrient selection during this fat-depleted phase of leptin treatment. Adult, male Sprague-Dawley rats were maintained on standard pelleted rodent chow and given daily lateral ventricular injections of leptin or vehicle solution until body weight reached the nadir point and food intake returned to normal levels. Injections were then continued for 8 days, during which rats self-selected their daily diet from separate sources of carbohydrate, protein, and fat. Macronutrient choice differed profoundly in leptin and control rats. Leptin rats exhibited a dramatic increase in protein intake, whereas controls exhibited a strong carbohydrate preference. Fat intake did not differ between groups at any time during the 8-day test. Despite these dramatic differences in macronutrient selection, total daily caloric intake did not differ between groups except on day 2. Thus controls of food intake related to ongoing metabolic and nutritional requirements may supersede the negative feedback signals related to body fat stores.  相似文献   

12.
We investigate whether leptin treatment to lactating rats affects food intake, body weight and leptin serum concentration and its anorectic effect on their adult offspring. Lactating rats were divided into 2 groups: Lep-single injected with recombinant rat leptin (8 microg/100 g of body weight, daily for the last 3 consecutive days of lactation) and control group (C) that received the same volume of saline. After weaning all pups had free access to the control diet, their body weight and food intake were monitored at each 4 days until 180 days of age, when they were tested for its food intake and response to either leptin (0.5 mg/kg body wt, ip) or saline vehicle. The offspring of the leptin-treated dams gained more weight and had higher food intake from day 37 onward (p<0.05), higher amount of retroperitoneal white adipose tissue (RPWAT) (37%, p<0.05) and higher leptin serum concentration (40%, p<0.05) at 180 days of age compared to control group. The food intake at 2, 4, 6 and 24 h was unaffected after acute injection of leptin in these animals, suggesting resistance to the anorectic effect of leptin. The maternal leptin treatment during lactation makes their adult offspring more susceptible to overweight with resistance to the anorectic effect of leptin.  相似文献   

13.
Both overnutrition and an incorrect nutrient balance have contributed to the rise in obesity. Moreover, it is now clear that poor nutrition during early life augments the possibility of excess weight gain in later years. Our aim was to determine how neonatal overnutrition affects later responses to a sucrose-enriched diet and whether this varies depending upon when the diet is introduced in postnatal life. Male Wistar rats raised in litters of four or 12 pups were given a 33% sucrose solution instead of water from weaning (day 21) or postnatal day (PND) 65. All rats received normal chow ad libitum until they were euthanized on PND 80. Body weight (BW) and food and liquid intake were monitored throughout the study. Fat mass, adipocyte morphology, serum biochemical and hormonal parameters, and hypothalamic neuropeptide mRNA levels were measured at study termination. Neonatal overnutrition increased food intake, BW, and leptin levels, induced adipocyte hypertrophy, and decreased total ghrelin levels. The sucrose-enriched diet increased total energy intake, adipose accrual, and leptin, adiponectin, and acylated ghrelin levels but decreased BW. Most of these responses were accentuated in neonatally overnourished rats, which also had increased insulin and triglyceride levels. However, long-term sucrose intake induced adipocyte hypertrophy in rats from normal-sized litters but not in neonatally overfed rats. The results reported here indicate that neonatal overnutrition increases the detrimental response to a diet rich in sucrose later in life. Moreover, the timing and duration of the exposure to a sucrose-enriched diet alter the adverse metabolic outcomes.  相似文献   

14.
Stressor experiences during the juvenile period may increase vulnerability to anxiety and depressive-like symptoms in adulthood. Stressors may also promote palatable feeding, possibly reflecting a form of self-medication. The current study investigated the short- and long-term consequences of a stressor applied during the juvenile period on anxiety- and depressive-like behavior measured by the elevated plus maze (EPM), social interaction and forced swim test (FST). Furthermore, the effects of stress on caloric intake, preference for a palatable food and indices of metabolic syndrome and obesity were assessed. Male Wistar rats exposed to 3 consecutive days of variable stressors on postnatal days (PD) 27–29, displayed elevated anxiety-like behaviors as adults, which could be attenuated by consumption of a palatable high-fat diet. However, consumption of a palatable food in response to a stressor appeared to contribute to increased adiposity.  相似文献   

15.
Lactating rats were fed either the commercial diet (CO) or the low protein diet which induced symptoms of protein - energy deprivation (PD). They were housed in cages either individually (IH) together with eight offspring or in a large community cage (COM) shared by six dams and 48 youngs. After weaning all rats lived in cages by 4-5 animals. The PD terminated at the age of 49 days. Behaviour was tested on the 10th, 42nd and 150 th days of life. Body weight was recorded during nursing period both in dams and pups, after weaning in male rats. The low protein diet affected both body weight and maternal behaviour of the dams. In PD + IH pups growth as well as behavioural development was retarded. Behavioural alterations persisted even after the PD had been treated. The COM housing improved the body weight in the PD + COM dams, behaviour of both the PD + COM dams ond the pups was less affected than of the PD + IH group. The effect of the early housing was long lasting, manifested itself in elevated exploratory activity and in the decreased emotional responses in both the PD + COM and the CO + COM groups at the age of 42 and 150 days.  相似文献   

16.
Peptide YY(3-36) [PYY(3-36)] is a gut-brain peptide that decreases food intake when administered by intravenous infusion to lean and obese humans and rats. However, chronic administration of PYY(3-36) by osmotic minipump to lean and obese rodents produces only a transient reduction in daily food intake and weight gain. It has recently been shown that 1-h intravenous infusions of PYY(3-36) every other hour for 10 days produced a sustained reduction in daily food intake, body weight, and adiposity in lean rats. Here, we determined whether intermittent delivery of PYY(3-36) can produce a similar response in diet-induced obese rats. During a 21-day period, obese rats (body fat >25%) received twice daily intraperitoneal infusion of vehicle (n = 18) or PYY(3-36) (n = 24) during hours 1-3 and 7-9 of the dark period. Rats had free access to both a 45% fat solid diet and a 29% fat liquid diet; intakes were determined from continuous computer recording of changes in food container weights. To sustain a 15-25% reduction in daily caloric intake, the initial PYY(3-36) dose of 30 pmol.kg(-1).min(-1) was reduced to 10 pmol.kg(-1).min(-1) on day 10 and then increased to 17 pmol.kg(-1).min(-1) on day 13. This dosing strategy produced a sustained reduction in daily caloric intake of 11-32% and prevented body weight gain (8 +/- 6 vs. 51 +/- 11 g) and fat deposition (4.4 +/- 7.6 vs. 41.0 +/- 12.8 g). These results indicate that intermittent intraperitoneal infusion of PYY(3-36) can produce a sustained reduction in food intake and adiposity in diet-induced obese rodents consuming palatable high-fat foods.  相似文献   

17.
The dramatic increase in the prevalence of childhood obesity worldwide makes the investigation of its early developmental stages and effective prevention strategies an urgent issue. CCK1 deficient OLETF rats are a model of obesity previously used to study the early phases of this disorder. Here, we exposed wild type (LETO) females to an early obesogenic environment and genetically obese OLETF females to a lean postnatal environment, to assess long term alterations in leptin sensitivity, predisposition to diet induced obesity and adult female health. We found that genetically lean females reared by obese mothers presented early postnatal hyperleptemia, selectively reduced response to leptin and sensitivity to diet induced obesity when exposed to a high palatable diet as adults. The estrous cycle structure and intake profile were permanently disrupted, despite presenting normal adiposity/body weight/food intake. Genetically obese females reared by lean dams showed normalized early levels of leptin and reduced body weight, food intake and body fat at adulthood; normalized estrous cycle structure and food intake across the cycle, improved hormonal profile and peripheral leptin sensitivity and a remarkable progress in self-control when exposed to a high fat/palatable diet. Altogether, it appears that the early postnatal environment plays a critical role in determining later life coping with metabolic challenges and has an additive effect on the genetic predisposition that makes OLETF females morbidly obese as adults. This work also links, for the first time, alterations in the leptin system during early development to later life abnormalities related to female reproduction and health.  相似文献   

18.
The supply of polyunsaturated fatty acids (PUFA) is important for optimal fetal and postnatal development. We have previously shown that leptin levels in suckling rats are reduced by maternal PUFA deficiency. In the present study, we evaluated the effect of maternal dietary intake of (n-3) and (n-6) PUFA on the leptin content in rat milk and serum leptin levels in suckling pups. For the last 10 days of gestation and throughout lactation, the rats were fed an isocaloric diet containing 7% linseed oil (n-3 diet), sunflower oil (n-6 diet), or soybean oil (n-6/n-3 diet). Body weight, body length, inguinal fat pad weight, and adipocyte size of the pups receiving the n-3 diet were significantly lower during the whole suckling period compared with n-6/n-3 fed pups. Body and fat pad weights of the n-6 fed pups were in between the other two groups at week one, but not different from the n-6/n-3 group at week 3. Feeding dams the n-3 diet resulted in decreased serum leptin levels in the suckling pups compared with pups in the n-6/n-3 group. The mean serum leptin levels of the n-6 pups were between the other two groups but not different from either group. There were no differences in the milk leptin content between the groups. These results show that the balance between the n-6 and n-3 PUFA in the maternal diet rather than amount of n-6 or n-3 PUFA per se could be important for adipose tissue growth and for maintaining adequate serum leptin levels in the offspring.  相似文献   

19.
Experiments were conducted to determine whether chronic caffeine consumption during early growth and development affected cardiac performance and development of adipose tissue. Dams were fed a nutritionally complete diet with or without the addition of 10 mg/kg caffeine during lactation. After weaning, the pups were maintained on this diet until they were sacrificed at 88 days of age. Body weight at the time of sacrifice was comparable for both groups. The hearts from caffeine-fed animals were significantly (P less than 0.05) larger based on both dry and wet weights although the dry weight/wet weight ratios were similar. Ventricular function curves were generated on each heart using an isolated working heart preparation. The isolated hearts of caffeine-fed rats exhibited a significant reduction in cardiac output, stroke volume, mean aortic pressure, and estimated myocardial work when compared to controls. The rats fed caffeine had greater plasma triglyceride levels with no significant differences in adipocyte size or number in the epididymal and perirenal depots. It is concluded that chronic caffeine intake from birth may alter cardiac function of the offspring.  相似文献   

20.
The purpose of this investigation was to assess the effects of early nutrition on adipose tissue characteristics and growth by altering litter size. After birth, rats were redistributed into large (15-18 pups), control (10 pups), or small (4 pups) litters. During the postweaning phase of growth half of the small-litter animals were pair-fed to animals raised in large litters for 5 wk and then allowed to feed ad libitum until they were 80 days of age. The small-litter males gained weight at a more rapid rate than the other litter types, both before and after weaning, and attained a final body weight twofold greater than the other groups. The small-litter males had significantly higher (P less than 0.05) numbers of adipocytes per epididymal fat pad than the other litter groups with 60.4, 51.4, and 79.0% greater cell number per pad than control, large, and pair-fed animals, respectively. Limiting food intake to small-litter animals after weaning (pair-fed) inhibited this growth and prevented fat cell proliferation. Litter manipulation had significant effects on male rats, but the same treatment did not influence female rats. Litter size influenced fat cell characteristics but had little effect on the adipocytes' ability to take up or metabolize glucose. The major finding, in terms of insulin responsiveness, was the difference between the sexes. The uptake of tritiated 2-deoxyglucose by the fat cells of female litter groups was significantly higher than that of the males whether insulin was present or not, whereas the conversion of [1-14C]glucose to CO2 by the adipocytes of females was lower than that of the males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号