首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Hepatic genes crucial for carbohydrate and lipid homeostasis are regulated by insulin and glucose metabolism. However, the relative contributions of insulin and glucose to the regulation of metabolic gene expression are poorly defined in vivo. To address this issue, adenovirus-mediated hepatic overexpression of glucokinase was used to determine the effects of increased hepatic glucose metabolism on gene expression in fasted or ad libitum fed rats. In the fasted state, a 3 fold glucokinase overexpression was sufficient to mimic feeding-induced increases in pyruvate kinase and acetyl CoA carboxylase mRNA levels, demonstrating a primary role for glucose metabolism in the regulation of these genes in vivo. Conversely, glucokinase overexpression was unable to mimic feeding-induced alterations of fatty acid synthase, glucose-6-phosphate dehydrogenase, carnitine palmitoyl transferase I or PEPCK mRNAs, indicating insulin as the primary regulator of these genes. Interestingly, glucose-6-phosphatase mRNA was increased by glucokinase overexpression in both the fasted and fed states, providing evidence, under these conditions, for the dominance of glucose over insulin signaling for this gene in vivo. Importantly, glucokinase overexpression did not alter sterol regulatory element binding protein 1-c mRNA levels in vivo and glucose signaling did not alter the expression of this gene in primary hepatocytes. We conclude that a modest hepatic overexpression of glucokinase is sufficient to alter expression of metabolic genes without changing the expression of SREBP-1c.  相似文献   

4.
5.
Amylin appears to interfere with the action of insulin in muscle and possibly in liver. We have attempted to detect a direct antagonism between amylin and insulin in cultured rat hepatocytes. The stimulation of glucokinase gene expression was used as a marker of insulin action. Amylin proved ineffective in suppressing subsequent accumulation of glucokinase mRNA in response to maximal or submaximal doses of insulin. When applied to cells already induced by prior incubation with insulin alone, amylin failed to reverse induction, in contrast to the effectiveness of glucagon under the same conditions. Thus, amylin is not a physiological antagonist of insulin in the control of hepatic glucokinase gene expression.  相似文献   

6.
7.
The liver and intestinal metabolites of orally dosed 13-cis-[11-3H]retinoic acid were analyzed in normal and 13-cis-retinoic acid treated rats 3 h after administration of the radiolabeled retinoid. all-trans-Retinoic acid was identified as a liver and intestinal mucosa metabolite in normal rats given physiological doses of 13-cis-[3H]retinoic acid. all-trans-Retinoyl glucuronide was identified as the most abundant radiolabeled metabolite in mucosa and a prominent liver metabolite under the same conditions. Thus, the major 13-cis-retinoic acid metabolites retained in liver and mucosa, two retinoid target tissues, had the all-trans configuration. These data indicate that the isomerization of 13-cis-retinoic acid to all-trans-retinoic acid and the subsequent conversion to all-trans-retinoyl glucuronide are central events in the in vivo metabolism of 13-cis-retinoic acid in the rat. Moreover, the all-trans-retinoic acid detected in vivo could account for a significant fraction of the physiological activity of 13-cis-retinoic acid. The tissue disposition and metabolism of orally dosed 13-cis-[3H]retinoic acid are modulated by retinoid treatment. Chronic 13-cis-retinoic acid treatment apparently increased the intestinal accumulation of all-trans-retinoic acid, all-trans-retinoyl glucuronide, and 13-cis-retinoyl glucuronide. The liver concentrations of tritiated all-trans-retinoic acid and all-trans-retinoyl glucuronide were also elevated in 13-cis-retinoic acid treated rats.  相似文献   

8.
The contribution of dietary fat content and type to changes in the sensitivity of hepatic lipid metabolism to insulin was studied in primary hepatocyte cultures from donor rats maintained on a low-fat diet (LF), or on diets enriched in olive oil (OO) or fish oil (FO). The higher rate of fatty acid oxidation in hepatocytes from the FO-fed group was resistant to the inhibitory effects of insulin observed in hepatocytes from the other groups. Insulin stimulation of fatty acid incorporation into triglyceride (TG) was also less pronounced in hepatocytes from the FO-fed group than in those from the OO-fed group but there was no difference in the stimulatory effect of insulin on fatty acid incorporation into phospholipid (PL) in these two groups. In the case of fatty acid incorporation into both PL and TG, hepatocytes from the LF group were refractory to stimulation by insulin. At each concentration of insulin, hepatocytes from the FO-fed group secreted less very low density lipoprotein (VLDL) TG than those from the other groups. However, the absolute suppression of VLDL TG secretion by insulin was similar irrespective of the diet of the donor animals.We conclude that chronic consumption of a particular type of dietary fat does not affect the insulin sensitivity of the major pathways of hepatic lipid metabolism in a consistent manner.  相似文献   

9.
Several studies have shown that organophosphate pesticides affect carbohydrate metabolism and produce hyperglycemia. It has been reported that exposure to the organophosphate pesticide dichlorvos affects glucose homeostasis and decreases liver glycogen content. Glucokinase (EC 2.7.1.1) is a tissue-specific enzyme expressed in liver and in pancreatic beta cells that plays a crucial role in glycogen synthesis and glucose homeostasis. In the present study we analyzed the effect of one or three days of dichlorvos administration [20 mg/kg body weight] on the activity and mRNA levels of hepatic and pancreatic glucokinase as well as on insulin mRNA abundance in the rat. We found that the pesticide affects pancreatic and hepatic glucokinase activity and expression differently. In the liver the pesticide decreased the enzyme activity; on the contrary glucokinase mRNA levels were increased. In contrast, pancreatic glucokinase activity as well as mRNA levels were not affected by the treatment. Insulin mRNA levels were not modified by dichlorvos administration. Our results suggest that the decreased activity of hepatic glucokinase may account for the adverse effects of dichlorvos on glucose metabolism.  相似文献   

10.
The regulation of carbohydrate metabolism involves changes in the phosphorylation state of enzymes. We used okadaic acid, a potent inhibitor of protein phosphatases type 2A (IC50 0.05-2 nM) and type 1 (IC50 10-20 nM) to determine the role of these phosphatases in the control of carbohydrate metabolism by insulin in rat hepatocytes. In the absence of insulin, okadaic acid caused total inhibition of glycogen synthesis at 100 nM and half-maximal inhibition at 8-9 nM. In the presence of insulin, lower concentrations of okadaic acid (to which type 2A phosphatases are sensitive) were effective at inhibiting glycogen synthesis. 2.5 nM okadaic acid caused total inhibition of the 2-fold stimulation of glycogen synthesis by insulin but had no effect on the basal unstimulated rate of glycogen synthesis. This suggests the involvement of type 2A protein phosphatases in the stimulation of glycogen synthesis by insulin. Okadaic acid (5 nM), partially suppressed but did not abolish the increase in glucokinase mRNA levels caused by insulin, indicating that dephosphorylation mechanisms may be involved in the control of glucokinase mRNA levels by insulin. It is concluded that activation of protein phosphatases type 1 and/or type 2A by insulin may have a widespread role in the control of glucose metabolism at various sites.  相似文献   

11.
Overview of retinoid metabolism and function   总被引:13,自引:0,他引:13  
  相似文献   

12.
A retinoic acid binding protein isolated from the lumen of the rat epididymis (ERABP) is a member of the lipocalin superfamily. ERABP binds both the all-trans and 9-cis isomers of retinoic acid, as well as the synthetic retinoid (E)-4-[2-(5,6,7,8)-tetrahydro-5,5,8,8-tetramethyl-2 napthalenyl-1 propenyl]-benzoic acid (TTNPB), a structural analog of all-trans retinoic acid. The structure of ERABP with a mixture of all-trans and 9-cis retinoic acid has previously been reported. To elucidate any structural differences in the protein when bound to the all-trans and 9-cis isomers, the structures of all-trans retinoic acid-ERABP and 9-cis retinoic acid ERABP were determined. Our results indicate that the all-trans isomer of retinoic acid adopts an 8-cis structure in the binding cavity with no concomitant conformational change in the protein. The structure of TTNPB-ERABP is also reported herein. To accommodate this all-trans analog, which cannot readily adopt a cis-like structure, alternative positioning of critical binding site side chains is required. Consequently, both protein and ligand adaption are observed in the formation of the various holo-proteins.  相似文献   

13.
14.
15.
We have reported that the rat liver lipophilic extract (LE) synergized with insulin to induce Gck and Srebp-1c in primary rat hepatocytes. After identification of retinol and retinal in LE, only their effects in the absence or presence of insulin on Gck, but not that on Srebp-1c, were investigated subsequently. The retinoid effects on the Srebp-1c expression and the activation of its promoter were examined with real-time PCR and reporter gene assays, respectively. In primary hepatocytes, retinal and retinoic acid (RA) synergized with insulin to induce Srebp-1c expression. This induction was followed by the elevation of its target gene, fatty acid synthase. Activation of retinoid X receptor, but not retinoic acid receptor, was responsible for the induction of Srebp-1c expression. RA, but not retinal, also induced Srebp-1c expression in a dose dependent manner in INS-1 cells. The RA responsive elements in Srebp-1c promoter were determined as previously identified two liver X receptor elements responsible for mediating insulin action. We conclude that retinoids regulate hepatic Srebp-1c expression through activation of retinoid X receptor. The RA- and insulin-induced Srebp-1c expression converged at the same sites in its promoter, indicating the roles of vitamin A in regulation of hepatic gene expression.  相似文献   

16.
Unattended hepatic insulin resistance predisposes individuals to dyslipidemia, type 2 diabetes and many other metabolic complications. The mechanism of hepatic insulin resistance at the gene expression level remains unrevealed. To examine the effects of vitamin A (VA), total energy intake and feeding conditions on the insulin-regulated gene expression in primary hepatocytes of Zucker lean (ZL) and fatty (ZF) rats, we analyze the expression levels of hepatic model genes in response to the treatments of insulin and retinoic acid (RA). We report that the insulin- and RA-regulated glucokinase, sterol regulatory element-binding protein-1c and cytosolic form of phosphoenolpyruvate carboxykinase expressions are impaired in hepatocytes of ZF rats fed chow or a VA sufficient (VAS) diet ad libitum. The impairments are partially corrected when ZF rats are fed a VA deficient (VAD) diet ad libitum or pair-fed a VAS diet to the intake of their VAD counterparts in non-fasting conditions. Interestingly in the pair-fed ZL and ZF rats, transient overeating on the last day of pair-feeding regimen changes the expression levels of some VA catabolic genes, and impairs the insulin- and RA-regulated gene expression in hepatocytes. These results demonstrate that VA and feeding statuses modulate the hepatic insulin sensitivity at the gene expression level.  相似文献   

17.
Oxysterol nuclear receptors liver X receptor (LXR)alpha and LXRbeta are known to regulate lipid homeostasis in cells exposed to high amounts of cholesterol and/or fatty acids. In order to elucidate the specific and redundant roles of the LXRs in the testis, we explored the reproductive phenotypes of mice deficient of LXRalpha, LXRbeta, and both, of which only the lxralpha;beta-/- mice are infertile by 5 months of age. We demonstrate that LXRalpha-deficient mice had lower levels of testicular testosterone that correlated with a higher apoptotic rate of the germ cells. LXRbeta-deficient mice showed increased lipid accumulation in the Sertoli cells and a lower proliferation rate of the germ cells. In lxralpha;beta-/- mice, fatty acid metabolism was affected through a decrease of srebp1c and increase in scd1 mRNA expression. The retinoid acid signaling pathway was also altered in lxralpha;beta-/- mice, with a higher accumulation of all-trans retinoid receptor alpha, all-trans retinoid receptor beta, and retinoic aldehyde dehydrogenase-2 mRNA. Combination of these alterations might explain the deleterious phenotype of infertility observed only in lxralpha;beta-/- mice, even though lipid homeostasis seemed to be first altered. Wild-type mice treated with a specific LXR agonist showed an increase of testosterone production involving both LXR isoforms. Altogether, these data identify new roles of each LXR, collaborating to maintain both integrity and functions of the testis.  相似文献   

18.
19.
Vitamin A deficiency has been known for a long time to be accompanied with immune deficiency and susceptibility to a wide range of infectious diseases. Increasing evidence suggests that retinoic acids derived from vitamin A are involved in the functional regulation of the immune system. Of the two groups of retinoid receptors, retinoic acid receptors (RARs) and retinoid X receptors (RXRs) all-trans and 9-cis retinoic acids are high affinity ligands for RARs and 9-cis retinoic acid additionally binds to RXRs. In cells, at high concentrations, all-trans retinoic acid can be converted to 9-cis retinoic acid by unknown mechanisms. Apoptosis plays a major role in shaping the T cell repertoire and one way in which retinoids may affect immune functions is to influence the various apoptosis pathways. Indeed, it has been shown that retinoic acids can induce apoptosis, increase the rate of dexamethasone-induced death and inhibit activation-induced death of thymocytes and T lymphocytes. Therefore, retinoids together with glucocorticoids may be involved in regulating positive and negative selection of T lymphocytes. Here we demonstrate that retinoids can induce apoptosis of T cells through the stimulation of RARgamma. Specific stimulation of RARalpha, on the other hand, prevents both RARgamma-dependent and TCR-mediated cell death. In all these functions 9-cis retinoic acid proved to be more effective than all-trans retinoic acid suggesting the involvement of RXRs. Based on these results a possible mechanism through which costimulation of RARs and RXRs might affect spontaneous and activation-induced death of T lymphocytes is proposed.  相似文献   

20.
We have studied the intracellular distribution in vivo of glucokinase (GK) and glucokinase regulatory protein (GKRP) in livers of fasted and refed rats, using specific antibodies against both proteins and laser confocal fluorescence microscopy. GK was found predominantly in the nucleus of hepatocytes from starved rats. GK was translocated to the cytoplasm in livers of 1- and 2-h refed animals, but returned to the nucleus after 4 h. GKRP concentrated in the hepatocyte nuclei and its distribution did not change upon refeeding. These results show that, in physiological conditions, GKRP is present predominantly in the nuclei of hepatocytes and that the translocation of hepatic GK from and to the nucleus is operative in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号