首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nicotinic acetylcholine receptor and its ion channel   总被引:9,自引:0,他引:9  
  相似文献   

2.
Evolution of nicotinic acetylcholine receptor subunits   总被引:7,自引:0,他引:7  
A phylogenetic tree of a gene family of nicotinic acetylcholine receptor subunits was constructed using 84 nucleotide sequences of receptor subunits from 18 different species in order to elucidate the evolutionary origin of receptor subunits. The tree constructed showed that the common ancestor of all subunits may have appeared first in the nervous system. Moreover, we suggest that the alpha 1 subunits in the muscle system originated from the common ancestor of alpha 2, alpha 3, alpha 4, alpha 5, alpha 6, and beta 3 in the nervous system, whereas the beta 1, gamma, delta, and epsilon subunits in the muscle system shared a common ancestor with the beta 2 and beta 4 subunits in the nervous system. Using the ratio (f) of the number of nonsynonymous substitutions to that of synonymous substitutions, we predicted the functional importance of subunits. We found that the alpha 1 and alpha 7 subunits had the lowest f values in the muscle and nervous systems, respectively, indicating that very strong functional constraints work on these subunits. This is consistent with the fact that the alpha 1 subunit has sites binding to the ligand, and the alpha 7-containing receptor regulates the release of the transmitter. Moreover, the window analysis of the f values showed that strong functional constraints work on the so-called M2 region in all five types of muscle subunits. Thus, the window analysis of the f values is useful for evaluating the degree of functional constraints in not only the entire gene region, but also the within-gene subregion.   相似文献   

3.
Evidence from electrophysiology and biochemistry supports the hypothesis that the ion channel of the nicotinic acetylcholine receptor is formed by homologous amino acid sequences of all receptor subunits, called helices M2. A model of the ion channel is proposed and the selectivity filter is described as a ring of negatively-charged amino acid side chains [(1988) Nature 335, 645-648] which may undergo conformational changes upon permeation of the cation.  相似文献   

4.
5.
烟碱样乙酰胆碱受体(AChR)是一种配基门控性离子通道,由5个亚单位(α_2βγα)构成。利用非洲蟾蜍卵母细胞的表达系统可以研究AChR的通道特性和各亚单位所起的作用。电鳗电器官AChR和小牛肌AChR之间门控特性的差别,主要是由δ亚单位决定的;而小牛肌成年型AChR与胚胎型AChR之间的差别,则由ε亚单位决定。  相似文献   

6.
Models of the extracellular ligand-binding domain of nicotinic acetylcholine receptors (nAChRs), which are pentameric integral membrane proteins, are attractive for structural studies because they potentially are water-soluble and better candidates for x-ray crystallography and because their smaller size is more amenable for NMR spectroscopy. The complete N-terminal extracellular domain is a promising foundation for such models, based on previous studies of alpha7 and muscle-type subunits. Specific design requirements leading to high structural fidelity between extracellular domain nAChRs and full-length nAChRs, however, are not well understood. To study these requirements in heteromeric nAChRs, the extracellular domains of alpha4 and beta2 subunits with or without the first transmembrane domain (M1) were expressed in Xenopus oocytes and compared with alpha4beta2 nAChRs based on ligand binding and subunit assembly properties. Ligand affinities of detergent-solubilized, extracellular domain alpha4beta2 nAChRs formed from subunits with M1 were nearly identical to affinities of alpha4beta2 nAChRs when measured with [3H]epibatidine, cytisine, nicotine, and acetylcholine. Velocity sedimentation suggested that these extracellular domain nAChRs predominantly formed pentamers. The yield of these extracellular domain nAChRs was about half the yield of alpha4beta2 nAChRs. In contrast, [3H]epibatidine binding was not detected from the extracellular domain alpha4 and beta2 subunits without M1, implying no detectable expression of extracellular domain nAChRs from these subunits. These results suggest that M1 domains on both alpha4 and beta2 play an important role for efficient expression of extracellular domain alpha4beta2 nAChRs that are high fidelity structural models of full-length alpha4beta2 nAChRs.  相似文献   

7.
The patch clamp K+-conductance G of the nicotinic acetylcholine receptor (AcChoR) dimer (Mr≈ 590 000) of Torpedo californica, reconstituted in lipid vesicles, which decreases with increasing Ca2+-concentration in the range 0.1≤[Ca2+]/mM≤2, can be quantitatively rationalized by Ca2+-binding to negatively charged sites, causing charge reversal reducing the normal K+-accumulation in the channel vestibules. Cleavage of the sialic acid residues (up to 20±2 per dimer) reduces the K+-accumulation factor α = G0/G from α = 3±0.8 of the normal AcChoR to α = 2±0.7 for the desialyated AcChoR. Desialysation also decreases the Ca2+-sensitivity of the conductance from G0 = 96.6±6 pS at [Ca2+]→0 of the normal AcChoR to G0 = 84.2±6 pS. Endogenous hyperphosphorylation (to up to 28±4 phosphates per dimer) enhances the vestibular K+-accumulation to α = 3.6±0.7, without affecting the Ca2+-dissociation equilibrium constant KCa = 0.34± 0.05 mM at 295 K (22 °C). Most interestingly, even in the absence of AcCho, the hyperphosphorylated AcChoR dimer exhibits spontaneously long-lasting open channel events (τ = 200±50 ms). At [AcCho] = 2 μM there are two open states (τ 1 = 20±10 ms, τ 2 = 140±60 ms) whereas the normal AcChoR dimer has only one open state (τ = 6±4 ms). – Physiologically important is that (i) the sialic acid and phosphate residues render the AcChoR conductance sensitive to control by divalent ions and (ii) the channel behavior of the hyperphosphorylated AcChoR without AcCho appears to indicate pathophysiologically high phosphorylation activity of the cell leading, among others, to myasthenic syndromes. Received: 10 November 1997 / Revised version: 12 January 1998 / Accepted: 7 March 1998  相似文献   

8.
Interactions of the synthetic pyrethroid allethrin with the nicotinic acetylcholine (ACh) receptor/channel were studied in membranes from Torpedo electric organ. Allethrin did not inhibit binding of [3H]ACh to the receptor sites, but inhibited noncompetitively binding of [3H]perhydrohistrionicotoxin ([3H]H12-HTX) to the ionic channel sites in a dose-dependent manner. The inhibition constant (Ki) of [3H]H12-HTX binding in absence of receptor agonist was 30 micro M, while in presence of 100 micro M carbamylcholine it was 4 micro M. This inhibitory effect of allethrin had a negative temperature coefficient. The high affinity binding of allethrin to the channel sites of the nicotinic ACh-receptor may be indicative of a postsynaptic site of action for pyrethroids, in addition to their known action on the sodium channel.  相似文献   

9.
Previous studies have established the presence of overlapping binding sites for the noncompetitive antagonists (NCAs) amobarbital, tetracaine, and 3-trifluoromethyl-3-(m-[(125)I]iodophenyl) diazirine ([(125)I]TID) within the ion channel of the Torpedo nicotinic acetylcholine receptor (AChR) in the resting state. These well-characterized NCAs and competitive radioligand binding and photolabeling experiments were employed to better characterize the interaction of the dissociative anesthetics ketamine and thienylcycloexylpiperidine (TCP) with the resting AChR. Our experiments yielded what appear to be conflicting results: (i) both ketamine and TCP potentiated [(125)I]TID photoincorporation into AChR subunits; and (ii) ketamine and TCP had very little effect on [(14)C]amobarbital binding. Nevertheless, (iii) both ketamine and TCP completely displaced [(3)H]tetracaine binding (K(i)s approximately 20.9 and 2.0 microM, respectively) by a mutually exclusive mechanism. To reconcile these results we propose that, in the resting ion channel, TCP and ketamine bind to a site that is spatially distinct from the TID and barbiturate locus, while tetracaine bridges both binding sites.  相似文献   

10.
The nicotinic acetylcholine receptor (nAChR) is a key molecule involved in the propagation of signals in the central nervous system and peripheral synapses. Although numerous computational and experimental studies have been performed on this receptor, the structural dynamics of the receptor underlying the gating mechanism is still unclear. To address the mechanical fundamentals of nAChR gating, both conventional molecular dynamics (CMD) and steered rotation molecular dynamics (SRMD) simulations have been conducted on the cryo-electron microscopy (cryo-EM) structure of nAChR embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer and water molecules. A 30-ns CMD simulation revealed a collective motion amongst C-loops, M1, and M2 helices. The inward movement of C-loops accompanying the shrinking of acetylcholine (ACh) binding pockets induced an inward and upward motion of the outer β-sheet composed of β9 and β10 strands, which in turn causes M1 and M2 to undergo anticlockwise motions around the pore axis. Rotational motion of the entire receptor around the pore axis and twisting motions among extracellular (EC), transmembrane (TM), and intracellular MA domains were also detected by the CMD simulation. Moreover, M2 helices undergo a local twisting motion synthesized by their bending vibration and rotation. The hinge of either twisting motion or bending vibration is located at the middle of M2, possibly the gate of the receptor. A complementary twisting-to-open motion throughout the receptor was detected by a normal mode analysis (NMA). To mimic the pulsive action of ACh binding, nonequilibrium MD simulations were performed by using the SRMD method developed in one of our laboratories. The result confirmed all the motions derived from the CMD simulation and NMA. In addition, the SRMD simulation indicated that the channel may undergo an open-close (O ↔ C) motion. The present MD simulations explore the structural dynamics of the receptor under its gating process and provide a new insight into the gating mechanism of nAChR at the atomic level.  相似文献   

11.
To map the structure of a ligand-gated ion channel, we used the photolabile polyamine-containing toxin MR44 as photoaffinity label. MR44 binds with high affinity to the nicotinic acetylcholine receptor in its closed channel conformation. The binding stoichiometry was two molecules of MR44 per receptor monomer. Upon UV irradiation of the receptor-ligand complex, (125)I-MR44 was incorporated into the receptor alpha-subunit. From proteolytic mapping studies, we conclude that the site of (125)I-MR44 cross-linking is contained in the sequence alpha His-186 to alpha Leu-199, which is part of the extracellular domain of the receptor. This sequence partially overlaps in its C-terminal region with one of the three loops that form the agonist-binding site. The agonist carbachol and the competitive antagonist alpha-bungarotoxin had only minor influence on the photocross-linking of (125)I-MR44. The site where the hydrophobic head group of (125)I-MR44 binds must therefore be located outside the zone that is sterically influenced by agonist bound at the nicotinic acetylcholine receptor. In binding and photocross-linking experiments, the luminal noncompetitive inhibitors ethidium and triphenylmethylphosphonium were found to compete with (125)I-MR44. We conclude that the polyamine moiety of (125)I-MR44 interacts with the high affinity noncompetitive inhibitor site deep in the channel of the nicotinic acetylcholine receptor, while the aromatic ring of this compound binds in the upper part of the ion channel (i.e. in the vestibule) to a hydrophobic region on the alpha-subunit that is located in close proximity to the agonist binding site. The region of the alpha-subunit labeled by (125)I-MR44 should therefore be accessible from the luminal side of the vestibule.  相似文献   

12.
Nicotinic acetylcholine receptors (nAChRs) are pentamers formed by subunits from a large multigene family and are highly variable in kinetic, electrophysiological and pharmacological properties. Due to the essential roles of nAChRs in many physiological procedures and diversity in function, identifying the function-related sites specific to each subunit is not only necessary to understand the properties of the receptors but also useful to design potential therapeutic compounds that target these macromolecules for treating a series of central neuronal disorders. By conducting a detailed function divergence analysis on nine neuronal nAChR subunits from representative vertebrate species, we revealed the existence of significant functional variation between most subunit pairs. Specifically, 44 unique residues were identified for the α7 subunit, while another 22 residues that were likely responsible for the specific features of other subunits were detected. By mapping these sites onto the 3?D structure of the human α7 subunit, a structure-function relationship profile was revealed. Our results suggested that the functional divergence related sites clustered in the ligand binding domain, the β2–β3 linker close to the N-terminal α-helix, the intracellular linkers between transmembrane domains, and the “transition zone” may have experienced altered evolutionary rates. The former two regions may be potential binding sites for the α7* subtype-specific allosteric modulators, while the latter region is likely to be subtype-specific allosteric modulations of the heteropentameric descendants such as the α4β2* nAChRs.

Communicated by Ramaswamy H. Sarma  相似文献   


13.
The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the 'Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, gamma-aminobutyric acid and serotonin. Cryo-electron microscopy has yielded a three-dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 A. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height about 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 A radius hydrophobic pore can form a functional barrier to the permeation of a 1 A radius Na+ ion. Using a united-atom force field for the protein instead of an all-atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.  相似文献   

14.
G Yellen  J C Migeon 《Gene》1990,86(2):145-152
We have produced the four subunits of the nicotinic acetylcholine receptor of Torpedo californica, an integral membrane protein, in the yeast Saccharomyces cerevisiae. Two of the subunits (alpha and delta) were readily produced from their cDNAs after simply subcloning them into a yeast shuttle vector adjacent to a yeast promoter. The other two protein subunits (beta and gamma) were not produced by this strategy, although the amounts of mRNA produced from these expression constructs are similar to those for alpha and delta. Replacing the DNA coding for the normal N-terminal signal sequences for the beta and gamma subunits with DNA coding for the signal sequence of yeast invertase results in successful protein synthesis. The yeast signal sequence allows these subunits to be translocated across the membrane of the endoplasmic reticulum and to be glycosylated. The appropriate final size of the subunit proteins suggests that the yeast signal sequence has been properly cleaved after translocation.  相似文献   

15.
The nicotinic acetylcholine receptor (AChR) can be either hetero-pentameric, composed of alpha and non-alpha subunits, or homo-pentameric, composed of alpha7 subunits. To explore the subunit-selective contributions of transmembrane domains to channel gating we analyzed single-channel activity of chimeric muscle AChRs. We exchanged M3 between alpha1 and epsilon or alpha7 subunits. The replacement of M3 in alpha1 by epsilonM3 significantly alters activation properties. Channel activity appears as bursts of openings whose durations are 20-fold longer than those of wild-type AChRs. In contrast, 7-fold briefer openings are observed in AChRs containing the reverse epsilon chimeric subunit. The duration of the open state decreases with the increase in the number of alpha1M3 segments, indicating additive contributions of M3 of all subunits to channel closing. Each alpha1M3 segment decreases the energy barrier of the closing process by approximately 0.8 kcal/mol. Partial chimeric subunits show that small stretches of the M3 segment contribute additively to the open duration. The replacement of alpha1 sequence by alpha7 in M3 leads to 3-fold briefer openings whereas in M1 it leads to 10-fold prolonged openings, revealing that the subunit-selective role is unique to each transmembrane segment.  相似文献   

16.
The nicotinic acetylcholine receptor (AChR) can be either hetero-pentameric, composed of α and non-α subunits, or homo-pentameric, composed of α7 subunits. To explore the subunit-selective contributions of transmembrane domains to channel gating we analyzed single-channel activity of chimeric muscle AChRs. We exchanged M3 between α1 and ? or α7 subunits. The replacement of M3 in α1 by ?M3 significantly alters activation properties. Channel activity appears as bursts of openings whose durations are 20-fold longer than those of wild-type AChRs. In contrast, 7-fold briefer openings are observed in AChRs containing the reverse ? chimeric subunit. The duration of the open state decreases with the increase in the number of α1M3 segments, indicating additive contributions of M3 of all subunits to channel closing. Each α1M3 segment decreases the energy barrier of the closing process by ∼ 0.8 kcal/mol. Partial chimeric subunits show that small stretches of the M3 segment contribute additively to the open duration. The replacement of α1 sequence by α7 in M3 leads to 3-fold briefer openings whereas in M1 it leads to 10-fold prolonged openings, revealing that the subunit-selective role is unique to each transmembrane segment.  相似文献   

17.
18.
Transmembrane transport is an essential component of the cell life. Many genes encoding known or putative transport proteins are found in bacterial genomes. In most cases their substrate specificity is not experimentally determined and only approximately predicted by comparative genomic analysis. Even less is known about the 3D structure of transporters. Nevertheless, the published experimental data demonstrate that channel-forming residues determine the substrate specificity of secondary transporters and analysis of these residues would provide better understanding of the transport mechanism. We developed a simple computational method for identification of channel-forming residues in transporter sequences. It is based on the analysis of amino acids frequencies in bacterial secondary transporters. We applied this method to a variety of transmembrane proteins with resolved 3D structure. The predictions are in sufficiently good agreement with the real protein structure.  相似文献   

19.
The reversible acetylcholine esterase inhibitor (-)-physostigmine (eserine) is the prototype of a new class of nicotinic acetylcholine receptor (nAChR) activating ligands: it induces cation fluxes into nAChR-rich membrane vesicles from Torpedo marmorata electric tissue even under conditions of antagonist blocked acetylcholine binding sites (Okonjo, Kuhlmann, Maelicke, Neuron, in press). This suggests that eserine exerts its channel-activating property via binding sites at the nAChR separate from those of the natural transmitter. We now report that eserine can activate the channel even when the receptor has been preincubated (desensitized) with elevated concentrations of acetylcholine. Thus the conformational state of the receptor corresponding to desensitization is confined to the transmitter binding region, leaving the channel fully activatable-albeit only from other than the transmitter binding site(s).  相似文献   

20.
Hung A  Tai K  Sansom MS 《Biophysical journal》2005,88(5):3321-3333
Multiple nanosecond duration molecular dynamics simulations were performed on the transmembrane region of the Torpedo nicotinic acetylcholine receptor embedded within a bilayer mimetic octane slab. The M2 helices and M2-M3 loop regions were free to move, whereas the outer (M1, M3, M4) helix bundle was backbone restrained. The M2 helices largely retain their hydrogen-bonding pattern throughout the simulation, with some distortions in the helical end and loop regions. All of the M2 helices exhibit bending motions, with the hinge point in the vicinity of the central hydrophobic gate region (corresponding to residues alphaL251 and alphaV255). The bending motions of the M2 helices lead to a degree of dynamic narrowing of the pore in the region of the proposed hydrophobic gate. Calculations of Born energy profiles for various structures along the simulation trajectory suggest that the conformations of the M2 bundle sampled correspond to a closed conformation of the channel. Principal components analyses of each of the M2 helices, and of the five-helix M2 bundle, reveal concerted motions that may be relevant to channel function. Normal mode analyses using the anisotropic network model reveal collective motions similar to those identified by principal components analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号