首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
ABSTRACT

This article comprises detailed information about L-asparaginase, encompassing topics such as microbial and plant sources of L-asparaginase, treatment with L-asparaginase, mechanism of action of L-asparaginase, production, purification, properties, expression and characteristics of l-asparaginase along with information about studies on the structure of L-asparaginase. Although L-asparaginase has been reviewed by , our effort has been to include recent and updated information about the enzyme covering new aspects such as structural modification and immobilization of L-asparaginase, recombinant L-asparaginase, resistance to L-asparaginase, methods of assay of L-asparagine and L-asparaginase activity using the biosensor approach, L-asparaginase activity in soil and the factors affecting it. Also, side-effects of L-asparaginase treatment in acute lymphoblastic leukemia (ALL) have been discussed in the current review. L-asparaginase has been and is still one of the most widely studied therapeutic enzymes by researchers and scientists worldwide.  相似文献   

2.
Purified L-asparaginase of Tetrahymena pyriformis is a multi-subunit enzyme exhibiting protein kinase activity as well. The enzyme's L-asparaginase activity is affected by its phosphorylation state. Both native and dephosphorylated L-asparaginase show antiproliferative activity on three breast cancer cell lines (T47D, BT20 and MCF-7) and on Walker 256 cells. These cells do not possess measurable L-asparaginase or L-asparagine synthetase activity. When T47D cells are treated for different times with L-asparaginase and then placed in fresh medium, the growth of cells treated for 1, 3, or 6 hours is initiated and parallels control curve, while the growth of cells treated for 24 or 48 hours with L-asparaginase stays at the same inhibitory level (24 h treatment) or continues to drop (48 h treatment). Addition of D-asparagine, a competitive inhibitor of T. pyriformis L-asparaginase, counteracts the antiproliferative activity of L-asparaginase, indicating that L-asparaginase and not the kinase activity is responsible for that effect.  相似文献   

3.
Nitrogen represents a critical nutrient in raised bogs. In Sphagna , dominating this habitat, the prevalent storage amino acid asparagine is catabolized predominantly by the enzyme L-asparaginase (EC 3.5.1.1). L-asparaginase activity has been detected in each of 10 Sphagnum species investigated. In Sphagnum fallax Klinggr. (Klinggr. clone 1) cultivated under axenie conditions in continuous feed bioreactors, the enzyme displayed a light dependent increase in activity. We separated two isoforms, designated L-asparaginase 1 and 2, characterized by their different elution patterns from an anion-exchange column. In stem segments only L-asparaginase 2 could be detected, whereas in capitulae L-asparaginase 1 represented the dominating isoform. Purified chloroplasts displayed no L-asparaginase activity. Almost the entire activity was located in the cytosohc fraction. L-asparaginase 1 and 2 have been purified 82-fold and 188-fold, respectively, by ion-exchange, size-exclusion and hydrophobic interaction chrornatography. Identical pH optima (8.2) and molecular weights (126 000) were determined. The Km values for asparagine (7.4 m M for L-asparaginase 1 and 6.2 m M for L-asparaginase 2) were in the range of those described for higher plants. On the other hand Sphagnum L-asparaginase is comprised of four subunits as are the L-asparaginases of microorganisms. So, the characteristics of the bryophyte enzyme appear to be intermediate between those from higher plants and those from microorganisms.  相似文献   

4.
The amino acid contents of tumor cells that are either sensitive or resistant to treatment with L-asparaginase were measured. These amino acid concentrations were measured as a function of incubation time with L-asparaginase or as a function of the L-asparaginase dose. The cell types compared were the mouse leukemia lines L5178Y (sensitive to L-asparaginase treatment) and L5178Y/L-ASE (resistant to L-asparaginase treatment). Upon L-asparaginase treatment both cell lines lost most of their cellular asparagine but, whereas the resistant cells exhibited the ability to rebound to about 50% of initial values, the sensitive cells did not. While previous work had suggested that asparagine-dependent glycine synthesis was essential for sensitive cells (but not in resistant cells), we found no difference in the glycine content of either of the two cell lines as a function of either time or dose that would support this hypothesis. Major differences between the two cell lines were seen in the content of the essential amino acids before treatment with L-asparaginase. After incubation without L-asparaginase the contents of the two cell lines became similar. These results are discussed in terms of possible mechanisms of L-asparaginase sensitivity and resistance.  相似文献   

5.
L-Asparaginase is widely used in the treatment of acute lymphoblastic leukemia. L-Asparaginase preparation derived from E. coli converts asparagine (Asn) and glutamine (Gln) to aspartate (Asp) and glutamate (Glu), respectively, and causes rapid depletion of Asn and Gln. It thus suppresses growth of malignant cells that are more dependent on an exogenous source of Asn and Gln than are normal cells. It remains unclear, however, which signaling events in leukemic cells are affected by L-asparaginase. Recently, amino acid sufficiency has been demonstrated to selectively regulate p70 S6 kinase (p70(s6k)) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), both of which are targeted by the anti-proliferative drug rapamycin. Here we demonstrate that addition of L-asparaginase to human leukemic cells inhibits activity of p70(s6k) and phosphorylation of 4E-BP1, but not activities of other cell growth-related serine/threonine kinases. The rate and kinetics of p70(s6k) inhibition by L-asparaginase were comparable to those seen by deprivation of Asn and/or Gln from cell culture media, suggesting that the effect of L-asparaginase on p70(s6k) is explained by depletion of Asn and/or Gln. Moreover, L-Asparaginase as well as rapamycin selectively suppressed synthesis of ribosomal proteins at the level of mRNA translation. These data indicate that L-asparaginase and rapamycin target a common signaling pathway in leukemic cells.  相似文献   

6.
An L-asparaginase has been purified some 250-fold from extracts of Klebsiella aerogenes to near homogeneity. The enzyme has a molecular weight of 141,000 as measured by gel filtration and appears to consist of four subunits of molecular weight 37,000. The enzyme has high affinity for L-asparagine, with a Km below 10(-5) M, and hydrolyzes glutamine at a 20-fold lower rate, with a Km of 10(-3) M. Interestingly, the enzyme exhibits marked gamma-glutamyltransferase activity but comparatively little beta-aspartyl-transferase activity. A mutant strain lacking this asparaginase has been isolated and grows at 1/2 to 1/3 the rate of the parent strain when asparagine is provided in the medium as the sole source of nitrogen. This strain grows as well as the wild type when the medium is supplemented with histidine or ammonia. Glutamine synthetase activates the formation of L-asparaginase. Mutants lacking glutamine synthetase fail to produce the asparaginase, and mutants with a high constitutive level of glutamine synthetase also contain the asparaginase at a high level. Thus, the formation of asparaginase is regulated in parallel with that of other enzymes capable of supplying the cell with ammonia or glutamate, such as histidase and proline oxidase. Formation of the asparaginase does not require induction by asparaginase and is not subject to catabolite repression.  相似文献   

7.
Most of L-asparaginase activity of Tetrahymena pyriformis was found to be present in microsomal membranes from which it has been purified to homogeneity (Tsirka, S.A.E. and Kyriakidis, D.A. Mol. Cell. Biochem. 83: 147–155, 1988). The native enzyme has a relative molecular weight of approximately 200 kDa, while under denaturing conditions the enzyme exhibits. a subunit size of 39 kDa. Aminoacid analysis and an oligopeptide from N-terminal sequence have been determined. Dephosphorylation of L-asparaginase by alkaline phosphatase results in an activation of its catalytic activity. This enzyme also exhibits intrinsic phosphorylation activity with a Km value for ATP of 0.5 mM. Autophosphorylation with -32P ATP of purified L-asparaginase results in the phosphorylation of tyrosine residues as well as in loss of its activity. Mg2+ and Ca2+ added together act synergistically to stimulate the kinase activity by more than 160%. The polyamines putrescine, spermidine and spermine activate the kinase approximately 100%, while neither cAMP or cGMP have any effect. These results indicate that this membrane protein with dual L-asparaginase/kinase activity must play an important role in regulating the intracellular levels of L-asparagine in Tetrahymena pyriformis.  相似文献   

8.
L-Asparaginase is an antileukemic agent that depletes L-asparagine “an important nutrient for cancer cells” through the hydrolysis of L-asparagine into L-aspartic acid and ammonia leading to leukemia cell starvation and apoptosis in susceptible leukemic cell populations. Moreover currently, bacterial L-asparaginase has been limited by problems of lower productivity, stability, selectivity and a number of toxicities along with the resistance towards bacterial L-asparaginase. Then the current work aimed to provide pure L-asparaginase with in-vitro efficacy against various human carcinomas without adverse effects related to current L-asparaginase formulations. Submerged fermentation (SMF) bioprocess was applied and improved to maximize L-asparaginase production from Fusarium equiseti AHMF4 as alternative sources of bacteria. The enzyme production in SMF was maximized to reach 40.78 U mL−1 at the 7th day of fermentation with initial pH 7.0, incubation temperature 30 °C, 1.0% glucose as carbon source, 0.2% asparagine as nitrogen source, 0.1% alanine as amino acid supplement and 0.1% KH2PO4. The purification of AHMF4 L-asparaginase yielded 2.67-fold purification and 48% recovery with final specific activity of 488.1 U mg−1 of protein. Purified L-asparaginase was characterized as serine protease enzyme with molecular weight of 45.7 kDa beside stability at neutral pH and between 20 and 40 °C. Interestingly, purified L-asparaginase showed promising DPPH radical scavenging activity (IC50 69.12 μg mL−1) and anti-proliferative activity against cervical epitheloid carcinoma (Hela), epidermoid larynx carcinoma (Hep-2), hepatocellular carcinoma (HepG-2), Colorectal carcinoma (HCT-116), and breast adenocarcinoma (MCF-7) with IC50 equal to 2.0, 5.0, 12.40, 8.26 and 22.8 μg mL−1, respectively. The enzyme showed higher activity, selectivity and anti-proliferative activity against cancerous cells along with tiny cytotoxicity toward normal cells (WI-38) which indicates that it has selective toxicity and it could be applied as a less toxic alternative to the current formulations.  相似文献   

9.
The antitumour activity of the preparations of L-asparaginase from E. coli and Erw. carotovora with respect to lymphadenosis L-5178 and Yorker's carcinosarcoma (ascitic cariants) has been established. No difference in antitumour efficacy of the preparation of L-asparaginase obtained from E. coli and Erw. carotovora was noted.  相似文献   

10.
A membrane-bound L-asparaginase (EC 3.5.1.1) of Tetrahymena pyriformis was purified to homogeneity. The purified enzyme is a lipoprotein, since it is inactivated by phospholipase C and its activity is restored by the addition of naturally occuring lipids, such as phosphatidylcholine, triolein and oleyl acetate. The relative effectiveness of a variety of phospholipids, free saturated and unsaturated fatty acids, or neutral lipids, such as esters of fatty, acids and glycerides, with respect to the activation of purified L-asparaginase is compared. Enzyme activity is reconstituted in the presence of lipids and evidence for the formation of an enzyme-phospholipid complex is presented. The data of this report suggest that L-asparaginase may have a requirement for lipids that reconstitute a physiological hydrophobic environment, similar to the one existing in vivo.Abbreviations DPPC Dipalmitoylphosphatidylcholine - DPPE Dipalmitoylphosphatidylethanolamine - DMPC Dimyristoylphosphatidylcholine - PS Phosphatidylserine - PI Phosphatidylinositol - IPC Lysophosphatidylcholine - PC Phosphatidylcholine - PE Phosphatidylethanolamine  相似文献   

11.
The properties of L-asparaginase (EC 3.5.1.1) in Leptosphaeria michotii (West) Sacc., which has previously been shown to have an activity rhythm, were analyzed. Two forms of L-asparaginase were isolated from acetic acid and ammonium sulfate fractionations followed by DEAE-Sephacel chromatography. The activity of L-asparaginase changed rhythmically with the same period as that of crude extracts, but the rhythms of the two enzyme forms were out of phase. The two asparaginase forms differed in their isoelectric points and the substrate concentrations for attaining half-maximal velocity; non-Michaelis-Menten kinetics for hydrolysis of L-asparagine were observed. Analyses of asparaginase form II by polyacrylamide gel electrophoresis showed that four proteins, irrespective of the phase of the activity rhythm at which the enzyme was extracted, could be detected: asparaginase oligomer (Mr 130 000 to 140 000), its dimer, an aggregate (Mr 500 000 to 600 000) having a low asparaginase activity, and a protein (Mr 60 000) without asparaginase activity; the same proteins were found in asparaginase form I. These results indicate that L. michotii asparaginase could be implicated in a protein complex.  相似文献   

12.
L-Asparaginase (ASNase), an antileukemia enzyme, is facing problems with antigenicity in the blood. Modification of L-asparaginase from Cladosporium sp. was tried to obtain improved stability and improved functionality. In our experiment, modification of the enzyme was tried with bovine serum albumin, ovalbumin by crosslinking using glutaraldehyde, N-bromosuccinimide, and mono-methoxy polyethylene glycol. Modified enzymes were studied for activity, temperature stability, rate constants (kd), and protection to proteolytic digestion. Modification with ovalbumin resulted in improved enzyme activity that was 10-fold higher compared to native enzyme, while modification with bovine serum albumin through glutaraldehyde cross-linking resulted in high stability of L-asparaginase that was 8.5- and 7.62-fold more compared to native enzyme at 28°C and 37°C by the end of 24 hr. These effects were dependent on the quantity of conjugate formed. Modification also markedly prolonged L-asparaginase half-life and serum stability. N-Bromosuccinimide-modified ASNase presented greater stability with prolonged in vitro half-life of 144 hr to proteolytic digestion relative to unmodified enzyme (93 h). The present work could be seen as producing a modified L-asparaginase with improved activity and stability and can be a potential source for developing therapeutic agents for cancer treatment.  相似文献   

13.
14.
L-asparaginase (EC 3.5.1.1) catalyzes the hydrolysis of the amide group of L-asparagine, releasing aspartate and NH4+. We isolated a low temperature-inducible cDNA sequence encoding L-asparaginase from soybean leaves. The full-length L-asparaginase cDNA, designated GmASP1, contains an open reading frame of 1,258 bp coding for a protein of 326 amino acids. Genomic DNA blotting and fluorescence in situ hybridization showed that the soybean genome has two copies of GmASP1. GmASP1 mRNA was induced by low temperature, ABA and NaCl, but not by heat shock or drought stress. E. coli cells expressing recombinant GmASP1 had 3-fold increased L-asparaginase activity. A possible function of L-asparaginase in the early response to low temperature stress is discussed.  相似文献   

15.
Polyethylene glycol (PEG) conjugation technology has been successfully applied to improve the performance of protein drugs. In this study, L-asparaginase was N-terminal site-specifically modified by alkylating PEG with monomethoxy polyethylene glycol-propionaldehyde (mPEG-ALD20000). The optimum reaction parameters were determined as pH 5.0, a molar ratio of mPEG-ALD2000 to L-asparaginase of 10:1, a reaction time of 16 h and temperature of 25 degrees C. PEG-L-asparaginase (PEG-L-ASNase) was isolated and purified with consecutive anion-exchange (XK, 16 x 20 cm, Q Sepharose FF) and gel-filtration (Tricorn, 10 x 600 cm, Sephacryl S-300 HR) chromatography, respectively. PEG-L-ASNase retained 43.5% of its activity and the N-terminal amino groups were modified to an extent of 3.67%.  相似文献   

16.
An L-asparaginase producing mesophilic fungus Cylindrocarpon obtusisporum MB-10 was isolated from soil. The constitutive intracellular L-asparaginase from the organism was purified. The enzyme after 65-fold purification with an overall yield of 11% and specific activity of 100 unit.mg-1 seemed to be homogeneous in native, SDS-PAGE and thin layer isoelectric focusing gel. The apparent Mr of the enzyme was 216,000, and it constituted four identical subunits. The pI of the enzyme was 5.5. It was a conjugate protein with 37.3% (w/w) carbohydrate. The enzyme was stable to storage at -20 degrees C and to repeated freezing and thawing. The L-asparaginase from the organism was very much specific for L-asparagine and did not hydrolyze D-asparagine and L-glutamine. The pH and temperature optima for the enzyme activity were 7.4 and 37 degrees C, respectively. The Km of the L-asparaginase was found to be 1 x 10(-3)M. Metal ions, such as Zn2+, Fe2+, Cu2+, Hg2+ and Ni2+ potentially inhibited the enzyme activity, while metal chelators like EDTA, CN-, cysteine, etc., enhanced the activity indicating that the enzyme was not a metalloprotein. Its activity was also enhanced in the presence of reduced glutathione but not with dithiothreitol and 2-mercaptoethanol. Differential inhibition of the enzyme activity was observed with iodoacetamide and p-chloromercuribenzoate, thus indicating possible involvement of free-SH group in the enzyme catalysis.  相似文献   

17.
Applied Biochemistry and Microbiology - L-asparaginase has been widely accepted as a standard anticancer drug for acute lymphoblastic leukaemia (ALL). Presently in L-asparaginase biotherapeutic...  相似文献   

18.
L-asparaginase production was investigated in the filamentous fungi Aspergillus tamarii and Aspergillus terreus. The fungi were cultivated in medium containing different nitrogen sources. A. terreus showed the highest L-asparaginase (activity) production level (58 U/L) when cultivated in a 2% proline medium. Both fungi presented the lowest level of L-asparaginase production in the presence of glutamine and urea as nitrogen sources. These results suggest that L-asparaginase production by of filamentous fungi is under nitrogen regulation.  相似文献   

19.
L-asparaginase treatment is used in the clinic to treat acute lymphoblastic leukemia (ALL) patients. Lee et al. (2019, Blood 133:2222-2232) demonstrated that L-asparaginase induces apoptosis by activating inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ signaling in a Huntingin-associated protein 1 (HAP1)-dependent manner. Moreover, HAP1 levels inversely correlate with the sensitivity of the ALL cells to L-asparaginase. HAP1 can therefore be used as biomarker for evaluating L-asparaginase resistance.  相似文献   

20.
Bacterial L-asparaginases catalyzing hydrolysis of L-asparagine to L-aspartate and ammonia, are used in medical practice for treatment of acute lymphoblastic leukemia. The long-term therapy with these preparations is accompanied by a number of side effects, which are attributed to glutaminase activity of L-asparaginase. Substrate specificity and activity of L-asparaginases are directly associated with the oligomerization process of this enzyme, which is active only as the tetramer because its active sites are located in the contact areas between monomers. The present work is devoted to homology modeling of spatial structure of L-asparaginase from Erwinia carotovora, the comparative molecular-graphic analysis of subunit interfaces, and the development of a new experimental approach for studies of enzyme oligomerization. L-Asparaginase was immobilized on a surface of CM5 optical chip of biosensor Biacore 3000, which is based on the surface plasmon resonance technology. The dissociation process of enzyme tetrameric complexes up to monomers and subsequent oligomerization process have been registered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号