首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Aggrecan is responsible for the mechanical properties of cartilage. One of the earliest changes observed in arthritis is the depletion of cartilage aggrecan due to increased proteolytic cleavage within the interglobular domain. Two major sites of cleavage have been identified in this region at Asn(341)-Phe(342) and Glu(373)-Ala(374). While several matrix metalloproteinases have been shown to cleave at Asn(341)-Phe(342), an as yet unidentified protein termed "aggrecanase" is responsible for cleavage at Glu(373)-Ala(374) and is hypothesized to play a pivotal role in cartilage damage. We have identified and cloned a novel disintegrin metalloproteinase with thrombospondin motifs that possesses aggrecanase activity, ADAMTS11 (aggrecanase-2), which has extensive homology to ADAMTS4 (aggrecanase-1) and the inflammation-associated gene ADAMTS1. ADAMTS11 possesses a number of conserved domains that have been shown to play a role in integrin binding, cell-cell interactions, and extracellular matrix binding. We have expressed recombinant human ADAMTS11 in insect cells and shown that it cleaves aggrecan at the Glu(373)-Ala(374) site, with the cleavage pattern and inhibitor profile being indistinguishable from that observed with native aggrecanase. A comparison of the structure and expression patterns of ADAMTS11, ADAMTS4, and ADAMTS1 is also described. Our findings will facilitate the study of the mechanisms of cartilage degradation and provide targets to search for effective inhibitors of cartilage depletion in arthritic disease.  相似文献   

2.
Aggrecan degradation involves proteolytic cleavage of the core protein within the interglobular domain. Because aggrecan is highly glycosylated with chondroitin sulfate (CS) and keratan sulfate (KS), we investigated whether glycosylation affects digestion by aggrecanase at the Glu(373)-Ala(374) bond. Treatment of bovine aggrecan monomers to remove CS and KS resulted in loss of cleavage at this site, suggesting that glycosaminoglycans (GAGs) play a role in cleavage at the Glu(373)-Ala(374) bond. In contrast, MMP-3 cleavage at the Ser(341)-Phe(342) bond was not affected by glycosidase treatment of aggrecan. Removal of KS, but not CS, prevented cleavage at the Glu(373)-Ala(374) bond. Thus, KS residues may be important for recognition of this cleavage site by aggrecanase. KS glycosylation has been observed at sites adjacent to the Glu(373)-Ala(374) bond in steer aggrecan, but not in calf aggrecan (Barry, F. P., Rosenberg, L. C., Gaw, J. U., Gaw, J. U., Koob, T. J., and Neame, P. J. (1995) J. Biol. Chem. 270, 20516-20524). Interestingly, although we found that aggrecanase degraded both calf and steer cartilage aggrecan, the proportion of fragments generated by cleavage at the Glu(373)-Ala(374) bond was higher in steer than in calf, consistent with our observations using aggrecan treated to remove KS. We conclude that the GAG content of aggrecan influences the specificity of aggrecanase for cleavage at the Glu(373)-Ala(374) bond and suggest that age may be a factor in aggrecanase degradation of cartilage.  相似文献   

3.
Aggrecan, the major proteoglycan of cartilage that provides its mechanical properties of compressibility and elasticity, is one of the first matrix components to undergo measurable loss in arthritic diseases. Two major sites of proteolytic cleavage have been identified within the interglobular domain (IGD) of the aggrecan core protein, one between amino acids Asn(341)-Phe(342) which is cleaved by matrix metalloproteinases and the other between Glu(373)-Ala(374) that is attributed to aggrecanase. Although several potential aggrecanase-sensitive sites had been identified within the COOH terminus of aggrecan, demonstration that aggrecanase cleaved at these sites awaited isolation and purification of this protease. We have recently cloned human aggrecanase-1 (ADAMTS-4) (Tortorella, M. D., Burn, T. C., Pratta, M. A., Abbaszade, I., Hollis, J. M., Liu, R., Rosenfeld, S. A., Copeland, R. A., Decicco, C. P., Wynn, R., Rockwell, A., Yang, F., Duke, J. L., Solomon, K., George, H., Bruckner, R., Nagase, H., Itoh, Y., Ellis, D. M., Ross, H., Wiswall, B. H., Murphy, K., Hillman, M. C., Jr., Hollis, G. F., Newton, R. C., Magolda, R. L., Trzaskos, J. M., and Arner, E. C. (1999) Science 284, 1664-1666) and herein demonstrate that in addition to cleavage at the Glu(373)-Ala(374) bond, this protease cleaves at four sites within the chondroitin-sulfate rich region of the aggrecan core protein, between G2 and G3 globular domains. Importantly, we show that this cleavage occurs more efficiently than cleavage within the IGD at the Glu(373)-Ala(374) bond. Cleavage occurred preferentially at the KEEE(1667-1668)GLGS bond to produce both a 140-kDa COOH-terminal fragment and a 375-kDa fragment that retains an intact G1. Cleavage also occurred at the GELE(1480-1481)GRGT bond to produce a 55-kDa COOH-terminal fragment and a G1-containing fragment of 320 kDa. Cleavage of this 320-kDa fragment within the IGD at the Glu(373)-Ala(374) bond then occurred to release the 250-kDa BC-3-reactive fragment from the G1 domain. The 140-kDa GLGS-reactive fragment resulting from the preferential cleavage was further processed at two additional cleavage sites, at TAQE(1771)-(1772)AGEG and at VSQE(1871-1872)LGQR resulting in the formation of a 98-kDa fragment with an intact G3 domain and two small fragments of approximately 20 kDa. These data elucidate the sites and efficiency of cleavage during aggrecan degradation by aggrecanase and suggest potential tools for monitoring aggrecan cleavage in arthritis.  相似文献   

4.
Products generated by the digestion of human aggrecan with recombinant human stromelysin have been purified and analyzed by N-terminal sequencing and C-terminal peptide isolation. N-terminal analysis of chondroitin sulfate-bearing fragments revealed a clearly identifiable sequence initiating at residue Phe342 of human aggrecan, providing evidence for a cleavage site at the Asn341-Phe342 bond located within the interglobular domain. This cleavage site, which separates the G1 domain from the remainder of the molecule, was confirmed by isolation from the liberated G1 domain of a C-terminal tryptic peptide with the sequence YDAICYTGEDFVDIPEN (in which the C-terminal residue is Asn341). This peptide was also isolated from tryptic digests of hyaluronan-binding proteins (A1D4 samples) prepared by CsCl gradient centrifugation of extracts of mature human articular cartilages. Since these A1D4 samples contain G1 domain which accumulates as a result of aggrecan catabolism in vivo, these results clearly indicate that stromelysin cleaves the Asn341-Phe342 bond of human aggrecan in situ.  相似文献   

5.
Mature human aorta contains a 70-kDa versican fragment, which reacts with a neoepitope antiserum to the C-terminal peptide sequence DPEAAE. This protein therefore appears to represent the G1 domain of versican V1 (G1-DPEAAE(441)), which has been generated in vivo by proteolytic cleavage at the Glu(441)-Ala(442) bond, within the sequence DPEAAE(441)-A(442)RRGQ. Because the equivalent aggrecan product (G1-NITEGE(341)) and brevican product (G1-EAVESE(395)) are generated by ADAMTS-mediated cleavage of the respective proteoglycans, we tested the capacity of recombinant ADAMTS-1 and ADAMTS-4 to cleave versican at Glu(441)-Ala(442). Both enzymes cleaved a recombinant versican substrate and native human versican at the Glu(441)-Ala(442) bond and the mature form of ADAMTS-4 was detected by Western analysis of extracts of aortic intima. We conclude that versican V1 proteolysis in vivo can be catalyzed by one or more members of the ADAMTS family of metalloproteinases.  相似文献   

6.
We have expressed G1-G2 mutants with amino acid changes at the DIPEN(341) downward arrow(342)FFGVG and ITEGE(373) downward arrow(374)ARGSV cleavage sites, in order to investigate the relationship between matrix metalloproteinase (MMP) and aggrecanase activities in the interglobular domain (IGD) of aggrecan. The mutation DIPEN(341) to DIGSA(341) partially blocked cleavage by MMP-13 and MMP-8 at the MMP site, while the mutation (342)FFGVG to (342)GTRVG completely blocked cleavage at this site by MMP-1, -2, -3, -7, -8, -9, -13, -14. Each of the MMP cleavage site mutants, including a four-amino acid deletion mutant lacking residues ENFF(343), were efficiently cleaved by aggrecanase, suggesting that the primary sequence at the MMP site had no effect on aggrecanase activity in the IGD. The mutation (374)ARGSV to (374)NVYSV completely blocked cleavage at the aggrecanase site by aggrecanase, MMP-8 and atrolysin C but had no effect on the ability of MMP-8 and MMP-13 to cleave at the Asn(341) downward arrowPhe bond. Susceptibility to atrolysin C cleavage at the MMP site was conferred in the DIGSA(341) mutant but absent in the wild-type, (342)GTRVG, (374)NVYSV, and deletion mutants. To further explore the relationship between MMP and aggrecanase activities, sequential digest experiments were done in which MMP degradation products were subsequently digested with aggrecanase and vice versa. Aggrecanase-derived G1 domains with ITEGE(373) C termini were viable substrates for MMPs; however, MMP-derived G2 fragments were resistant to cleavage by aggrecanase. A 10-mer peptide FVDIPENFFG, which is a substrate analogue for the MMP cleavage site, inhibited aggrecanase cleavage at the Glu(373) downward arrowAla bond. This study demonstrates that MMPs and aggrecanase have unique substrate recognition in the IGD of aggrecan and suggests that sequences at the C terminus of the DIPEN(341) G1 domain may be important for regulating aggrecanase cleavage.  相似文献   

7.
Erosion of cartilage is a major feature of joint diseases, i.e., osteoarthritis and rheumatoid arthritis, which leads with time to a loss of joint function. Proteolytic cleavage of the aggrecan core protein is a key event in the progress of these joint diseases. Aggrecan degradation has been believed to be mediated by a putative proteinase, aggrecanase. We identified aggrecanase activity in conditioned medium from explant culture of bovine nasal cartilage stimulated by retinoic acid. The activity was partially purified more than 10,000-fold. The enzyme cleaves at the aggrecanase site (Glu(373)-Ala(374)) but not at the MMP site (Asn(341)-Phe(342)) in the interglobular domain of the aggrecan. It also cleaves at Glu(1971)-Leu(1972), which is located in the gap region in the chondroitin sulfate attachment region prior to the aggrecanase site. The enzyme is a typical Ca(2+)-dependent metalloproteinase with a unique salt-dependency and is inhibited by several hydroxamate-based inhibitors for matrix metalloproteinases. Heparin and chondroitin sulfate inhibited the enzyme in a dose-dependent manner, suggesting that the large carbohydorate in aggrecan is important for substrate recognition by aggrecanase.  相似文献   

8.
ADAMTS-4 (aggrecanase-1) and ADAMTS-5 (aggrecanase-2) are multidomain metalloproteinases belonging to the ADAMTS family. We have previously reported that human ADAMTS-5 has much higher aggrecanolytic activity than human ADAMTS-4. To investigate the different proteolytic activity of the two enzymes, we generated a series of chimeras by exchanging various non-catalytic domains of the two proteinases. We found that the catalytic domain of ADAMTS-5 has higher intrinsic catalytic ability than that of ADAMTS-4. The studies also demonstrated that the non-catalytic domains of ADAMTS-5 are more effective modifiers than those of ADAMTS-4, making both catalytic domains more active against aggrecan, an Escherichia coli-expressed interglobular domain of aggrecan and fibromodulin. Addition of the C-terminal thrombospondin type I motif of ADAMTS-5 to the C terminus of ADAMTS-4 increased the activity of ADAMTS-4 against aggrecan and fibromodulin severalfold. In contrast to previous reports (Kashiwagi, M., Enghild, J. J., Gendron, C., Hughes, C., Caterson, B., Itoh, Y., and Nagase, H. (2004) J. Biol. Chem. 279, 10109-10119 and Gao, G., Plaas, A., Thompson, V. P., Jin, S., Zuo, F., and Sandy, J. D. (2004) J. Biol. Chem. 279, 10042-10051), our detailed investigation of the role of the C-terminal spacer domain of ADAMTS-4 indicated that full-length ADAMTS-4 is approximately 20-times more active against aggrecan than its spacer domain deletion mutant, even at the Glu373-Ala374 site of the interglobular domain. This discrepancy is most likely due to selective inhibition of full-length ADAMTS-4 by heparin, particularly for cleavage at the Glu373-Ala374 bond. However, removal of the spacer domain from ADAMTS-4 greatly enhanced more general proteolytic activity against non-aggrecan substrates, e.g. E. coli-expressed interglobular domain, fibromodulin, and carboxymethylated transferrin.  相似文献   

9.
Aggrecanase cleavage at the Glu(373)-Ala(374) site in the interglobular domain of the cartilage proteoglycan aggrecan is a key event in arthritic diseases. The observation that substrates representing only the aggrecanase cleavage site are not catabolized efficiently by aggrecanase prompted us to investigate the requirement of aggrecanase for additional structural elements of its substrate other than the actual cleavage site. Based on the recombinant substrate rAgg1mut we constructed deletion mutants with successively truncated N- or C-termini of the interglobular domain. Catabolism by aggrecanase activities induced in rat chondrosarcoma cells, porcine chondrocytes, and by human recombinant ADAMTS4 showed a gradually decreasing catabolism of progressively shortened, N-terminal deletion mutants of the substrate rAgg1mut. A reduction to 32 amino acids N-terminal to the aggrecanase site resulted in a decrease of at least 42% of aggrecanase cleavage products as compared with the wild-type substrate. When only 16 amino acids preceded the Glu(373)-Ala(374) site, aggrecanase cleavage was completely inhibited. In contrast, C-terminal deletions did not negatively affect aggrecanase cleavage up to the reduction to 13 amino acids C-terminal to the cleavage site. Unlike aggrecanase(s), membrane type 1-matrix metalloprotease (MT1-MMP), able to cleave rAgg1mut both at the aggrecanase and the MMP site, was insensitive to N-terminal deletions regarding aggrecanase cleavage, indicating that the importance of the N-terminus is characteristic for aggrecanase(s). Taken together, the results demonstrate that the amino-terminus of rAgg1mut, containing the MMP site, plays an important role for efficient cleavage by aggrecanase(s), possibly by serving as a further site of interaction between the enzyme and its substrate.  相似文献   

10.
ADAM-TS5 (aggrecanase 2), one of two cartilage aggrecanases is a member of the ADAM protein family. Like ADAM-TS4 (aggrecanase 1) the enzyme cleaves cartilage aggrecan at the Glu(373)-Ala(374) bond, a marker of aggrecanase activity. In this study we have characterized the substrate specificity of ADAM-TS5 and compared it with that of ADAM-TS4. The recombinant human ADAM-TS5, like ADAM-TS4 cleaves aggrecan at Glu(1480)-Gly(1481), Glu(1667)-Gly(1668), Glu(1771)-Ala(1772) and Glu(1871)-Leu(1872) bonds more readily than at the Glu(373)-Ala(374) bond. In addition, ADAM-TS5 exhibited an additional site of cleavage in the region spanning residues Gly(1481) and Glu(1667), representing a unique cleavage of ADAM-TS5. ADAM-TS5 cleaved aggrecan approximately 2-fold slower than ADAM-TS4. Neither ADAM-TS5 nor ADAM-TS4 was able to cleave the extracellular matrix proteins fibronectin, thrombospondin, type I collagen, type II collagen, gelatin or general protein substrates such as casein and transferrin. Finally, the zymogen of stromelysin (MMP-3) was not activated by either ADAM-TS4 or ADAM-TS5.  相似文献   

11.
ADAMTS proteases typically employ some combination of ancillary C-terminal disintegrin-like, thrombospondin-1, cysteine-rich, and spacer domains to bind substrates and facilitate proteolysis by an N-terminal metalloprotease domain. We constructed chimeric proteases and substrates to examine the role of C-terminal domains of ADAMTS13 and ADAMTS5 in the recognition of their physiological cleavage sites in von Willebrand factor (VWF) and aggrecan, respectively. ADAMTS5 cleaves Glu(373)-Ala(374) and Glu(1480)-Gly(1481) bonds in bovine aggrecan but does not cleave VWF. Conversely, ADAMTS13 cleaves the Tyr(1605)-Met(1606) bond of VWF, which is exposed by fluid shear stress but cannot cleave aggrecan. Replacing the thrombospondin-1/cysteine-rich/spacer domains of ADAMTS5 with those of ADAMTS13 conferred the ability to cleave the Glu(1615)-Ile(1616) bond of VWF domain A2 in peptide substrates or VWF multimers that had been sheared; native (unsheared) VWF multimers were resistant. Thus, by recombining exosites, we engineered ADAMTS5 to cleave a new bond in VWF, preserving physiological regulation by fluid shear stress. The results demonstrate that noncatalytic thrombospondin-1/cysteine-rich/spacer domains are principal modifiers of substrate recognition and cleavage by both ADAMTS5 and ADAMTS13. Noncatalytic domains may perform similar functions in other ADAMTS family members.  相似文献   

12.
Brevican is a member of the lectican family of chondroitin sulfate proteoglycans that is predominantly expressed in the central nervous system. The susceptibility of brevican to digestion by matrix metalloproteinases (MMP-1, -2, -3, -7, -8, -9, -10, and -13 and membrane type 1 and 3 MMPs) and aggrecanase-1 (ADAMTS4) was examined. MMP-1, -2, -3, -7, -8, -10, and -13 degraded brevican into a few fragments with similar molecular masses, whereas the degradation products of aggrecanase-1 had apparently different sizes. NH(2)-terminal sequence analyses of the digestion fragments revealed that cleavages of the brevican core protein by these metalloproteinases occurred commonly within the central non-homologous domain. MMP-1, -2, -3, -7, -8, -10, and -13 preferentially attacked the Ala(360)-Phe(361) bond, whereas aggrecanase-1 cleaved the Glu(395)-Ser(396) bond, which are similar to the cleavage sites observed with cartilage proteoglycan (aggrecan) for the MMPs and aggrecanase-1, respectively. These data demonstrate that MMP-1, -2, -3, -7, -8, -10, and -13 and aggrecanase-1 digest brevican in a similar pattern to aggrecan and suggest that they may be responsible for the physiological turnover and pathological degradation of brevican.  相似文献   

13.
ADAMTS4 (aggrecanase-1) is considered to play a key role in the degradation of aggrecan in arthritides. The inhibitory activity of tissue inhibitors of metalloproteinases (TIMPs) to ADAMTS4 was examined in an assay using aggrecan substrate. Among the four TIMPs, TIMP-3 inhibited the activity most efficiently with an IC(50) value of 7.9 nM, which was at least 44-fold lower than that of TIMP-1 (350 nM) and TIMP-2 (420 nM) and >250-fold less than that of TIMP-4 (2 microM for 35% inhibition). These results suggest that TIMP-3 is a potent inhibitor against the aggrecanase activity of ADAMTS4 in vivo.  相似文献   

14.
15.
The enzymatic processes underlying the degradation of aggrecan in cartilage and the corresponding changes in the biomechanical properties of the tissue are an important part of the pathophysiology of osteoarthritis. Recent studies have demonstrated that the hexosamines glucosamine (GlcN) and mannosamine (ManN) can inhibit aggrecanase-mediated cleavage of aggrecan in IL-1-treated cartilage cultures. The term aggrecanase describes two or more members of the ADAMTS family of metalloproteinases whose glutamyl endopeptidase activity is known to be responsible for much of the aggrecan degradation seen in human arthritides. In this study we examined the effect of ManN and GlcN on aggrecanase-mediated degradation of aggrecan induced by IL-1alpha and the corresponding tissue mechanical properties in newborn bovine articular cartilage. After 6 days of culture in 10 ng/ml IL-1 plus ManN, mechanical testing of explants in confined compression demonstrated that ManN inhibited the IL-1alpha-induced degradation in tissue equilibrium modulus, dynamic stiffness, streaming potential, and hydraulic permeability, in a dose-dependent fashion, with peak inhibition ( approximately 75-100% inhibition) reached by a concentration of 1.35 mM. Aggrecan from explants cultured in IL-1 was found by Western analysis to be almost entirely processed down to the G1-NITEGE(373) end product. Addition of ManN or GlcN was found to produce 75-90% inhibition of this cleavage, but the proportion of aggrecan remaining in the tissue which was cleaved at aggrecanase sites in the chondroitin sulfate (CS)-rich region (Glu(1501) and Glu(1687)) was higher than with IL-1 alone. This result suggests that the preservation of mechanical properties by hexosamines in explants is primarily due to inhibition of cleavage at the Glu(373) site in the interglobular domain. While the precise mechanism by which hexosamines function in this system is unclear, the present analysis suggests that the mechanical properties examined may be predominantly a function of electrostatic repulsion due to the charged CS chains in the tightly packed repetitive sequences of the CS-1 region.  相似文献   

16.
A recombinant human aggrecan G1-G2 fragment comprising amino acids Val(1)-Arg(656) has been expressed in Sf21 cells using a baculovirus expression system. The recombinant G1-G2 (rG1-G2) was purified to homogeneity by hyaluronan-Sepharose affinity chromatography followed by high performance liquid chromatography gel filtration, and gave a single band of M(r) 90,000-95,000 by silver stain or immunoblotting with monoclonal antibody 1-C-6. The expressed G1-G2 bound to both hyaluronan and link protein indicating that the immunoglobulin-fold motif and proteoglycan tandem repeat loops of the G1 domain were correctly folded. Further analysis of secondary structure by rotary shadowing electron microscopy confirmed a double globe appearance, but revealed that the rG1-G2 was more compact than its native counterpart. The size of rG1-G2 by SDS-polyacrylamide gel electorphoresis was unchanged following digestion with keratanase and keratanase II and reduced by only 2-5 kDa following digestion with either O-glycosidase or N-glycosidase F. Recombinant G1-G2 was digested with purified matrix metalloproteinases (MMP), isolated aggrecanase, purified atrolysin C, or proteinases present in conditioned medium from cartilage explant cultures, and the products analyzed on SDS gels by silver stain and immunoblotting. Neoepitope antibodies recognizing the N-terminal F(342)FGVG or C-terminal DIPEN(341) sequences were used to confirm MMP cleavage at the Asn(341) downward arrow Phe bond, while neoepitope antibodies recognizing the N-terminal A(374)RGSV or C-terminal ITEGE(373) sequences were used to confirm aggrecanase cleavage at the Glu(373) downward arrow Ala bond. Cleavage at the authentic MMP and aggrecanase sites revealed that these proteinases have the same specificity for rG1-G2 as for native aggrecan. Incubation of rG1-G2 with conditioned medium from porcine cartilage cultures revealed that active soluble aggrecanase but no active MMPs, was released following stimulation with interleukin-1alpha or retinoic acid. Atrolysin C, which cleaves native bovine aggrecan at both the aggrecanase and MMP sites, efficiently cleaved rG1-G2 at the aggrecanase site but failed to cleave at the MMP site. In contrast, native glycosylated G1-G2 with or without keratanase treatment was cleaved by atrolysin C at both the aggrecanase and MMP sites. The results suggest that the presence or absence per se of keratan sulfate on native G1-G2 does not affect the activity of atrolysin C toward the two sites.  相似文献   

17.
Aggrecanases are ADAMTS (a disintegrin and metalloproteinase with thrombospondin type I motifs) proteases capable of primary (patho)physiological cleavage at specific Glu-Xaa bonds within the core protein of the hyaluronan-binding proteoglycan aggrecan. Accumulating evidence suggests that regulation of the activity of one such aggrecanase, ADAMTS-4 (or Aggrecanase-1), involves post-translational C-terminal processing (truncation) which modulates both glycosaminoglycan (GAG)-binding affinity and enzymatic activity. In the present study, we compared the effects of C-terminal truncation on the GAG-binding properties and aggrecanase activity of ADAMTS-5 (Aggrecanase-2) relative to three other ADAMTS family members, ADAMTS-9, ADAMTS-16 and ADAMTS-18. Full-length recombinant human ADAMTS-5 (M(r) approximately 85 kDa; ADAMTS-5p85) underwent autolytic cleavage during expression by CHO/A2 cells, and co-purified with C-terminally truncated (tr) isoforms of M(r) approximately 60 kDa (ADAMTS-5p60 and M(r) approximately 45 kDa (ADAMTS-5p45). All three ADAMTS-5 isoforms bound to sulfated GAGs (heparin and chondroitin sulfate (CS)). An ADAMTS-5p45 structural mimetic, terminating at Phe628 and comprising the catalytic domain, disintegrin-like domain and thrombospondin type I repeat (TSR)-1 domain (designated trADAMTS-5F628), also bound to heparin, and exhibited potent aggrecanase activity toward cleavage sites both in the aggrecan CS-2-attachment region (at Glu1771-Ala1772) and in the interglobular domain (at Glu373-Ala374). Further truncation (deletion of the TSR-1 domain) of ADAMTS-5 significantly reduced aggrecanase activity, although appreciable GAG (heparin)-binding affinity was maintained. Other TSR-1 domain-bearing truncated ADAMTS constructs demonstrating either positive GAG-binding ability (trADAMTS-9F649) or negligible GAG-affinity (trADAMTS-16F647 and trADAMTS-18F650) displayed comparably low aggrecanase activities. Thus, the presence of TSR-1 on truncated ADAMTSs appears to be necessary, but not sufficient, for effective aggrecanase-mediated catalysis of target Glu-Xaa bonds. Similarly, GAG-binding ability, irrespective of the presence of a TSR-1 domain, does not necessarily empower truncated ADAMTSs with proficient aggrecanase activity.  相似文献   

18.
Aggrecanases are key matrix-degrading enzymes that act by cleaving aggrecan at the Glu(373)-Ala(374) site. While these fragments have been detected in osteoarthritis (OA) and rheumatoid arthritis (RA) cartilage and synovial fluid, no information is available on the regulation or expression of the two key aggrecanases (aggrecanase-1 and aggrecanase-2) in synovial tissue (ST) or fibroblast-like synoviocytes (FLS). The aggrecanase-1 gene was constitutively expressed by both RA and OA FLS. Real-time PCR demonstrated that TGF-beta significantly increased aggrecanase-1 gene expression in FLS. Aggrecanase-1 induction peaked after 24 h of TGF-beta stimulation. The expression of aggrecanase-1 mRNA was significantly greater in RA ST than in OA or nonarthritis ST. Aggrecanase-2 mRNA and protein were constitutively produced by nonarthritis, OA, and RA FLS but were not increased by IL-1, TNF-alpha, or TGF-beta. Furthermore, OA, RA, and nonarthritis ST contained similar amounts of immunoreactive aggrecanase-2. The major form of the aggrecanase-2 enzyme was 70 kDa in nonarthritis ST, whereas a processed 53-kDa form was abundant in RA ST. Therefore, aggrecanase-1 and -2 are differentially regulated in FLS. Both are constitutively expressed, but aggrecanase-1 is induced by cytokines, especially TGF-beta. In contrast, aggrecanase-2 protein may be regulated by a post-translational mechanism in OA and RA ST. Synovial and FLS production of aggrecanase can contribute to cartilage degradation in RA and OA.  相似文献   

19.
We have studied aggrecan catabolism mediated by matrix metalloproteinases (MMPs) in a porcine cartilage culture system. Using antibodies specific for DIPEN(341) and (342)FFGVG neoepitopes, we have detected MMP-derived fragments in conditioned medium and cultured cartilage, by radioimmunoassay, Western blotting, and immunolocalization. Radioimmunoassay revealed that the amount (pmol of epitope/mg of total glycosaminoglycan) of (342)FFGVG epitope released from cartilage remained constant over a 5-day culture period and was not increased by IL-1alpha or retinoate. However, the proportion (pmol of epitope/mg of released glycosaminoglycan) of (342)FFGVG epitope released was decreased upon stimulation, consistent with the involvement of a non-MMP proteinase, such as aggrecanase. The data suggest that in vitro MMPs may be involved in the base-line catabolism of aggrecan. Immunolocalization experiments showed that DIPEN(341) and ITEGE(373) epitopes were increased by treatment with IL-1alpha and retinoate. Confocal microscopy revealed that ITEGE(373) epitope was largely intracellular but with matrix staining in the superficial zone, whereas DIPEN(341) epitope was cell-associated and widely distributed in the matrix. Surprisingly, the majority of (342)FFGVG epitope, determined by radioimmunoassay and Western blotting, was retained in the tissue despite the absence of a G1 domain anchor. Interleukin-1alpha stimulation caused a marked increase in tissue DIPEN(341) and (342)FFGVG epitope, and the (342)FFGVG fragments retained in the tissue were larger than those released into the medium. Active porcine aggrecanase was unable to cleave (342)FFGVG fragments at the downward arrowGlu(373) downward arrowAla(374) bond but cleaved intact aggrecan at this site, suggesting that (342)FFGVG fragments are not substrates for aggrecanase. The apparent retention of large (342)FFGVG fragments within cartilage, and their resistance to N-terminal cleavage by aggrecanase suggests that (342)FF6V6 fragments may have a role in cartilage homeostasis.  相似文献   

20.
Aggrecan degradation in articular cartilage occurs predominantly through proteolysis and has been attributed to the action of members of the matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) families. Both families of enzymes cleave aggrecan at specific sites within the aggrecan core protein. One cleavage site within the interglobular domain (IGD), between Glu373-374Ala and five additional sites in the chondroitin sulfate-2 (CS-2) region of aggrecan were characterized as “aggrecanase” (ADAMTS) cleavage sites, while cleavage between Ser341-342Phe within the IGD of bovine aggrecan is attributed to MMP action. The objective of this study was to assess the cleavage efficiency of MMPs relative to ADAMTS and their contribution to aggrecan proteolysis in vitro. The analysis of aggrecan IGD degradation in bovine articular cartilage explants treated with catabolic cytokines over a 19-day period showed that MMP-mediated degradation of aggrecan within the IGD can only be observed following day 12 of culture. This delay is associated with the lack of activation of proMMPs during the first 12 days of culture. Analysis of MMP1, 2, 3, 7, 8, 9, 12, 13 and ADAMTS5 efficiencies at cleaving within the aggrecan IGD and CS-2 region in vitro was carried out by the digestion of bovine aggrecan with the various enzymes and Western blot analysis using aggrecan anti-G1 and anti-G3 antibodies. Of these MMPs, MMP12 was the most efficient at cleaving within the aggrecan IGD. In addition to cleavage in the IGD, MMP, 3, 7, 8 and 12 were also able to degrade the aggrecan CS-2 region. MMP3 and MMP12 were able to degrade aggrecan at the very C-terminus of the CS-2 region, cleaving the Glu2047-2048Ala bond which was previously shown to be cleaved by ADAMTS5. However, in comparison to ADAMTS5, MMP3 was about 100 times and 10 times less efficient at cleaving within the aggrecan IGD and CS-2 regions, respectively. Collectively, our results showed that the delayed activation of proMMPs and the relatively low cleavage efficiency of MMPs can explain the minor contribution of these enzymes to aggrecan catabolism in vivo. This study also uncovered a potential role for MMPs in the C-terminal truncation of aggrecan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号