首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed studies were carried out on the binding of the enantiomers of [PtCl2(mepyrr)] (mepyrr = N-methyl-2-aminomethylpyrrolidine) to dG, d(GpG) and a 52-mer oligonucleotide. The pyrrolidine ligand structure was found to be neither sufficiently rigid nor bulky to enforce a single chirality at the exocyclic amine site in this complex, resulting in the presence of diastereomers that complicated the binding studies. Reaction of the (GpG) dinucleotide with R- and S-[PtCl2(mepyrr)] resulted in formation of four [Pt{d(GpG)}(mepyrr)] isomers for each enantiomer as a consequence of the existence of two orientational isomers and two diastereomers. These isomers formed in different amounts most likely as a consequence of the unequal formation of the diastereomers together with stereoselectivity induced by interactions between the dinucleotide and the mepyrr ligand. The [PtCl2(mepyrr)] complexes displayed stereoselectivity and enantioselectivity in their reactions with a 52-mer duplex designed to allow formation of only GpG intrastrand adducts. All four bifunctional adducts formed for each enantiomer, providing further evidence of the lack of directing ability of the ligand in formation of the 1,2-intrastrand adduct. Significant amounts of monofunctional species remained in these assays suggesting that the introduction of the methyl substituent to the exocyclic amine inhibited ring-closure to the bifunctional adduct. This was not sufficient to achieve enantiospecificity, but in the case of the R-enantiomer, one of the bifunctional adducts formed in only small amounts.  相似文献   

2.
3.
Detailed studies were carried out on the binding of the enantiomers of [PtCl2(mepyrr)] (mepyrr = N-methyl-2-aminomethylpyrrolidine) to dG, d(GpG) and a 52-mer oligonucleotide. The pyrrolidine ligand structure was found to be neither sufficiently rigid nor bulky to enforce a single chirality at the exocyclic amine site in this complex, resulting in the presence of diastereomers that complicated the binding studies. Reaction of the (GpG) dinucleotide with R- and S-[PtCl2(mepyrr)] resulted in formation of four [Pt{d(GpG)}(mepyrr)] isomers for each enantiomer as a consequence of the existence of two orientational isomers and two diastereomers. These isomers formed in different amounts most likely as a consequence of the unequal formation of the diastereomers together with stereoselectivity induced by interactions between the dinucleotide and the mepyrr ligand. The [PtCl2(mepyrr)] complexes displayed stereoselectivity and enantioselectivity in their reactions with a 52-mer duplex designed to allow formation of only GpG intrastrand adducts. All four bifunctional adducts formed for each enantiomer, providing further evidence of the lack of directing ability of the ligand in formation of the 1,2-intrastrand adduct. Significant amounts of monofunctional species remained in these assays suggesting that the introduction of the methyl substituent to the exocyclic amine inhibited ring-closure to the bifunctional adduct. This was not sufficient to achieve enantiospecificity, but in the case of the R-enantiomer, one of the bifunctional adducts formed in only small amounts.  相似文献   

4.
Duplex oligonucleotides containing a single intrastrand [Pt(NH3)2]2+ cross-link or monofunctional adduct and either 15 or 22 bp in length were synthesized and chemically characterized. The platinum-modified and unmodified control DNAs were polymerized in the presence of DNA ligase and the products studied on 8% native polyacrylamide gels. The extent of DNA bending caused by the various platinum-DNA adducts was revealed by their gel mobility shifts relative to unplatinated controls. The bifunctional adducts cis-[Pt(NH3)2[d(GpG)]]+, cis-[Pt(NH3)2[d(ApG)]]+, and cis-[Pt(NH3)2[d(G*pTpG*)]], where the asterisks denote the sites of platinum binding, all bend the double helix, whereas the adduct trans-[Pt(NH3)2[d(G*pTpG*)]] imparts a degree of flexibility to the duplex. When modified by the monofunctional adduct cis-[Pt(NH3)2(N3-cytosine)(dG)]Cl the helix remains rod-like. These results reveal important structural differences in DNAs modified by the antitumor drug cisplatin and its analogs that could be important in the biological processing of the various adducts in vivo.  相似文献   

5.
The cancer chemotherapeutic drug cis-diamminedichloroplatinum(II) (cis-DDP) produces bifunctional reactions with DNA which appear critical to its toxic action. The relative inefficacy of the isomer trans-DDP results from its production of predominantly monofunctional adducts in DNA. However, trans-DDP is also toxic and this is presumed to result from bifunctional reaction. These reactions have been characterized by platinating pure DNA followed by enzyme digestion, HPLC separation and analysis by atomic absorption and nuclear magnetic resonance (NMR). Bifunctional adducts occur between deoxyguanosine (dG) and either deoxyadenosine (dA), deoxycytidine (dC) or another dG. Although dG-Pt-dG occurs in both double-stranded (approximately 40% of total adducts) and single-stranded DNA (approximately 60%) there is a marked preference for formation of dG-Pt-dC in double-stranded DNA (approximately 50%) and dG-Pt-dA in single-stranded DNA (approximately 35%). Only dG-Pt-dG forms rapidly; the other adducts derive from rapid formation of a monofunctional dG-Pt and further reaction with dA or dC over many hours.  相似文献   

6.
The purpose of this study was to characterize the ternary complexes formed in the reaction of cis-diamminedichloroplatinum (II) (cis-DDP) and nucleic acids, in the presence of the intercalating compound ethidium bromide (EtBr). In these ternary complexes, some EtBr is tightly bound to the nucleic acids. Tight binding is defined by resistance to extraction with butanol, assayed by filtration at acid pH or thin layer chromatography at basic pH. These ternary complexes are formed with double stranded but not with single stranded nucleic acids. They are not formed if cis-DDP is replaced by transdiamminedichloroplatinum(II). The amount of tightly bound EtBr depends upon the sequence of the nucleic acid, being larger with poly (dG-dC).poly(dG-dC) than with poly(dG).poly(dC). Spectroscopic results support the hypothesis that the tight binding of the dye is due to the formation of a bidentate adduct (guanine-EtBr)cis-platin. The visible spectrum of the ternary complexes is blue-shifted as compared to that of EtBr intercalated between the base pairs of unplatinated DNA and it depends upon the conformation of the ternary complex. The fluorescence quantum yield of the ternary complexes is lower than that of free EtBr in water. Tightly bound EtBr stabilizes strongly the B form versus the Z form of the ternary complex poly(dG-dC)-Pt-EtBr and slows down the transition from the B form towards the Z form. The sequence specificity of cis-DDP binding to a DNA restriction fragment in the absence or presence of EtBr is mapped by means of the 3'----5' exonuclease activity of T4 DNA polymerase. In the absence of the dye, all the d(GpG) sites and all the d(ApG) sites but one in the sequence d(TpGpApGpC) are platinated. The d(GpA) sites are not platinated. In the presence of EtBr, some new sites are detected. These results might help to explain the synergism for drugs used in combination with cis-DDP and in the design of new chemotherapeutic agents.  相似文献   

7.
We developed a sensitive 32P-postlabeling method for the detection of bifunctional intrastrand crosslinks d(Pt-GpG) and d(Pt-ApG) in DNA in vitro and in vivo. After enzymatic digestion of DNA the positively charged platinum adducts were purified from unplatinated products, using strong cation exchange chromatography. Subsequently the samples were deplatinated with cyanide, because platinated dinucleotides are very poor substrates for polynucleotide kinase. The excess of cyanide was removed using Sep-pak C18 cartridges, and the resulting dinucleoside monophosphates d(GpG) and d(ApG) were subsequently postlabelled. Analysis of the postlabelling mixture was performed by a combined TLC and HPLC-procedure. Good correlations with existing methods (AAS, immunocytochemistry and ELISA) were found in DNA samples treated in vitro and in vivo with cis- or carboplatin. The detection limit of the assay was 1 adduct/10(7) nucleotides in a 10 micrograms DNA sample.  相似文献   

8.
We report the use of anti-nucleoside antibodies to probe for local denaturation of calf thymus DNA upon binding of the antitumor drug cis-diamminedichloroplatinum(II), cis-DDP, and the biologically inactive analogues trans-diamminedichloroplatinum(II), trans-DDP, and chloro(diethylenetriamine)platinum(II) chloride, [Pt(dien)Cl]Cl. These antibodies specifically recognize each of the four DNA nucleosides. They bind well to denatured DNA, but not to native DNA in which the bases are less accessible owing to Watson-Crick duplex structure. At relatively high levels of modification (D/N approximately 0.1), cis-DDP causes significant disruption of DNA base pairing as reflected by the increased binding of anti-cytidine, anti-adenosine, and anti-thymidine antibodies. At lower levels of platinum adduct formation, however, all four anti-nucleoside antibodies bind more to DNA modified with trans-DDP. This result indicates that adducts formed by trans-DDP disrupt the DNA structure to a greater extent than those formed by cis-DDP at low D/N ratios. Modification of DNA by the monofunctional complex [Pt(dien)Cl]Cl does not affect its recognition by anti-nucleoside antibodies, demonstrating that base pair disruption is a consequence of bifunctional binding. The relative anti-nucleoside antibody recognition of cis-DDP-modified DNA is anti-cytosine greater than anti-adenosine approximately anti-thymidine much greater than anti-guanosine, consistent with the major adduct being an intrastrand d(GpG) cross-link. These results reveal that base pair disruption in a naturally occurring DNA modified by either cis-DDP or trans-DDP is sufficient to be detected by protein (antibody) binding. The relevance of these findings to current ideas about the molecular mechanism of action of cis-DDP is discussed.  相似文献   

9.
Recognition and repair of DNA-cisplatin adducts   总被引:1,自引:0,他引:1  
  相似文献   

10.
Resistance to cisplatin in several murine leukemia L1210 cell lines is due to enhanced DNA repair. Other platinum complexes, particularly those containing 1,2-diaminocyclohexane (DACH) are of interest as they effectively kill both sensitive (L1210/0) and cisplatin-resistant (L1210/DDP) cell lines. An L1210/DACH cell line has been developed that is preferentially resistant to DACH-Pt complexes. In the current experiments, we investigated the role that DNA repair has in resistance to DACH-Pt compounds. The DACH ligand exists in 3 isomeric forms which exhibit markedly different activities in the various resistant cell lines. Generally, R,R-DACH-Pt was the most effective isomer. DNA repair was assayed by host-cell reactivation of platinated pRSVcat. DNA damage induced by all the isomeric DACH-Pt-SO4 complexes markedly reduced CAT expression in sensitive L1210/0 cells. One adduct per transcribed strand of the cat gene inhibited CAT expression demonstrating that the sensitive cells exhibited no detectable DNA repair. All the resistant cell lines reactivated the plasmid DNA whether damaged with cisplatin or any of the 3 DACH-Pt isomers. Therefore, resistance to both cisplatin and DACH-Pt appears to be mediated by enhanced DNA repair, but the level of reactivation of the transfected plasmid did not correlate with the toxicity of each analogue. These results suggest that some additional event(s) is responsible for the substrate specificity of repair of genomic DNA. These resistant cell lines also exhibited resistance to UV irradiation but this was much less than, and did not correlate with the degree of resistance to either cisplatin or DACH-Pt. However, there was a good correlation between resistance to UV irradiation and reactivation of UV-damaged plasmid DNA. This enhanced reactivation suggests that enhanced repair may be the sole reason for the resistance to UV irradiation.  相似文献   

11.
D Payet  F Gaucheron  M Sip    M Leng 《Nucleic acids research》1993,21(25):5846-5851
Single- and double-stranded oligonucleotides containing a single monofunctional cis-[Pt(NH3)2(dG)(N7-N-methyl-2-diazapyrenium)]3+ adduct have been studied at two NaCl concentrations. In 50 mM and 1 M NaCl, the adducts within the single-stranded oligonucleotides are stable. In contrast, they are unstable within the corresponding double-stranded oligonucleotides. In 50 mM NaCl, the bonds between platinum and guanine or N-methyl-2,7-diazapyrenium residues are cleaved and subsequently, intra- or interstrand cross-links are formed as in the reaction between DNA and cis-DDP. In 1 M NaCl, the main reaction is the replacement of N-methyl-2,7-diazapyrenium residues by chloride which generates double-stranded oligonucleotides containing a single monofunctional cis-[Pt(NH3)2(dG)Cl]+ adduct. The rates of closure of these monofunctional adducts to bifunctional cross-links have been studied in 60 mM NaClO4. Within d(TG.CT/AGCA), d(CG.CT/AGCG) and d(AG.CT/AGCT) (the symbol.indicates the location of the adducts in the central sequences of oligonucleotides), the half-lifes (t1/2) of the cis-[Pt(NH3)2(dG)Cl]+ adducts are respectively 12, 6 and 2.8 hr and the cross-linking reactions occur between guanine residues on the opposite strands. Within d(AG.TC/GACT), d(CG.AT/ATCG) and d(TGTG./CACA) or d(TG.TG/CACA) t1/2 are respectively 1.6, 8 and larger than 20 hr and the intrastrand cross-links are formed at the d(AG), d(GA) and d(GTG) sites, respectively. The conclusion is that the rates of conversion of cis-platinum-DNA monofunctional adducts to minor bifunctional cross-links are dependent on base sequence. The potential use of the instability of cis-[Pt(NH3)2(dG)(N7-N-methyl-2-diazapyrenium)]3+ adducts is discussed in the context of the antisense strategy.  相似文献   

12.
A series of site-specifically plantinated, covalently closed circular M13 genomes (7250 bp) was constructed in order to evaluate the consequences of DNA template damage induced by the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP). Here are reported the synthesis and characterization of genomes containing the intrastrand cross-linked adducts cis-[Pt(NH3)2[d(ApG)-N7(1),-N7(2)]], cis-[Pt-(NH3)2[d(GpCpG)-N7(1),-N7(3)]], and trans-[Pt(NH3)2[d(CpGpCpG)-N3(1),-N7(4)]]. These constructs, as well as the previously reported M13 genome containing a site-specifically placed cis-[Pt(NH3)2[d-(GpG)-N7(1),-N7(2)]] adduct, were used to study replication in vitro. DNA synthesis was initiated from a position approximately 177 nucleotides 3' to the individual adducts, and was terminated either by the adducts or by the end of the template, located approximately 25 nucleotides on the 5' side of the adducts. Analysis of the products of these reactions by gel electrophoresis revealed that, on average, bypass of the cis-DDP adducts occurred approximately 10% of the time and that the cis-[Pt(NH3)2[d(GpG)-N7(1),-N7(2)]] intrastrand cross-link is the most inhibitory lesion. The cis-[Pt(NH3)2[(GpCpG)-N7(1),-N7(3)]] adduct allowed a higher frequency of such translesion synthesis (ca. 25%) for two of the polymerases studied, modified bacteriophage T7 polymerase and Escherichia coli DNA polymerase I (Klenow fragment). These enzymes have either low (Klenow) or no (T7) associated 3' to 5' exonuclease activity. Bacteriophage T4 DNA polymerase, which has a very active 3' to 5' exonuclease, was the most strongly inhibited by all three types of cis-DDP adducts, permitting only 2% translesion synthesis. This enzyme is therefore recommended for replication mapping studies to detect the location of cis-DDP-DNA adducts in a heterologous population. The major replicative enzyme of E. coli, the DNA polymerase III holoenzyme, allowed less than 10% adduct bypass. Postreplication restriction enzyme cleavage studies established that the templates upon which translesion synthesis was observed contained platinum adducts, ruling out the possibility that the observed products were due to a small amount of contamination with unplatinated DNA. The effects on in vitro replication of a recently characterized adduct of trans-DDP [Comess, K. M., Costello, C. E., & Lippard, S. J. (1990) Biochemistry 29, 2102-2110] were also evaluated. This adduct provided a poor block both to DNA polymerases and to restriction enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
A Eastman  M A Barry 《Biochemistry》1987,26(12):3303-3307
Bifunctional reactions with DNA are responsible for the toxic action of the cancer chemotherapeutic drug cis-diamminedichloroplatinum(II) (cis-DDP). Thiourea has previously been used to trap transient monofunctional adducts in DNA before they rearrange to the toxic lesions. In these studies, thiourea was used to quantify the monofunctional adducts produced by the ineffective isomer trans-DDP. Rather than trapping monofunctional adducts, thiourea labilized them from DNA. At short time periods, 85% of trans-DDP bound to double-stranded DNA as monofunctional adducts of deoxyguanosine. Rearrangement to bifunctional adducts in double-stranded DNA was 50% complete in 24 h but was much more rapid in single-stranded DNA with 100% complete rearrangement in 24 h. The ineffectiveness of trans-DDP therefore results from a high proportion of monofunctional adducts in DNA that rearrange very slowly to toxic bifunctional adducts. The persistent monofunctional adducts react rapidly with glutathione, which would further reduce their potential toxicity by preventing them from rearranging to more toxic bifunctional adducts.  相似文献   

14.
The bulky, asymmetric analog of the antitumor drug cisplatin, [PtCl(2)(tmen)] (tmen = N,N,N'-trimethylethylenediamine), was used to produce crosslinks with the dinucleotide d(GpG), modeling the most frequent lesions that cisplatin and its analogs cause to DNA. The ligand tmen was chosen because it is expected to constrain the guanine cis to the NMe(2) group in the adduct [Pt(tmen){d(GpG)}](+) to an orientation perpendicular to the coordination plane and to stabilize the other guanine in an oblique orientation, thus maintaining a head-to-head geometry typical of cisplatin-d(GpG) crosslinks within single- and double-stranded DNA. Of the four possible combinations of tmen chirality (R or S symmetry of the coordinated NHMe group) and crosslink direction (5'-G bound cis to the secondary or the tertiary amino group of tmen), two isomers were preponderantly formed, [Pt(R-tmen){d(GpG)}](+) with 5'-G bound cis to NMe(2) and [Pt(S-tmen){d(GpG)}](+) with 5'-G bound cis to NHMe. The former was shown to have a right-handed R2 orientation of guanines similar to that found in duplex DNA, whereas the latter had a left-handed L1 orientation that modeled cisplatin-d(GpG) adducts within single-stranded DNA. The R2 rotamer was found to be in an equilibrium (as observed using EXSY spectroscopy) with a minor fraction (< or =4%) of a Delta-HT rotamer related to R2 by rotation of the 3'-G about the Pt-N7 bond. The major rotamers R2 and L1 were isolated using reverse-phase HPLC, and their NMR and CD signatures were compared to those of the corresponding rotamers of the less hindered adduct [Pt(dmen)(GpG)](+) (dmen = N,N-dimethylethylenediamine). From this and other comparisons with previously reported platinum dinucleotide complexes, and from molecular modeling, it could be concluded that both steric repulsion between guanine and substituents of the cis amino group and N-H...O6 hydrogen bonding are significant effects favoring the oblique orientation of one guanine base typical of the HH rotamers of [Pt(diamine){d(GpG)}](+) and [Pt(diamine)(GpG)](+) complexes.  相似文献   

15.
Antibodies reactive to (1R,2R)-cyclohexanediamineplatinum(II)-DNA ((1R,2R)-cyclohexanediamine: 1R,2R-dach) adducts were elicited by immunization of rabbit with calf thymus DNA modified by Pt(1R,2R-dach)Cl2 at a ratio of bound platinum per nucleotide ((D/N)b) of 0.0335. In an enzyme-linked immunosorbent assay (ELISA), the binding of specific antibodies to Pt(1R,2R-dach)-DNA adduct (60 microliters of 1.235 x 10(-7) M Pt in each wells) on the assay plate was competitively inhibited by Pt(1R,2R-dach)-DNA adduct ((D/N)b = 0.0653) in the solution. Almost equal inhibition was observed with Pt(1S,2S-dach)-DNA ((D/N)b = 0.0412), an optical isomer of 1R,2R-dach. Pt(1R,2S-dach)-DNA ((D/N)b = 0.0371) and Pt(1R,3S-dach)-DNA ((D/N)b = 0.0281) in which the cyclohexane ring is stereochemically perpendicular to the platinum chelate plane, also inhibited antibody binding, but these adducts gave only incomplete inhibition at higher Pt-DNA adduct concentrations. Although Pt(1R,2R-dach)-d(GpG) and Pt(1R,2R-dach)(NH3)2 inhibited antibody binding, the affinity of the antibody for Pt(1R,2R-dach)(NH3)2 was lower than with Pt(1R,2R-dach)-DNA, and the inhibition behavior of Pt(1R,2R-dach)-d(GpG) was biphasic, i.e., at the lower concentration the inhibition curve was consistent with that of Pt(1R,2R-dach)-DNA, but at the higher concentration it shifted to that of Pt(1R,2R-dach)(NH3)2. The affinity of the antibody for cis-DDP was markedly lower than with Pt(1R,2R-dach)(NH3)2. These facts suggest that the antibodies may bind to the substituents (the platinum and its surroundings) of the various Pt complexes rather than the DNA structure altered by platinum binding.  相似文献   

16.
The toxicity and mutagenicity of three DNA adducts formed by the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP or cisplatin) were investigated in Escherichia coli. The adducts studied were cis-[Pt(NH3)2(d(GpG))] (G*G*), cis-[Pt(NH3)2(d(ApG))] (A*G*) and cis-[Pt(NH3)2(d(GpTpG))] (G*TG*), which collectively represent approximately 95% of the DNA adducts reported to form when the drug damages DNA. Oligonucleotide 24-mers containing each adduct were positioned at a known site within the viral strand of single stranded M13mp7L2 bacteriophage DNA. Following transfection into E. coli DL7 cells, the genomes containing the G*G*, A*G* and G*TG* adducts had survival levels of 5.2 +/- 1.2, 22 +/- 2.6 and 14 +/- 2.5% respectively, compared to unmodified genomes. Upon SOS induction, the survival of genomes containing the G*G* and A*G* adducts increased to 31 +/- 5.4 and 32 +/- 4.9% respectively. Survival of the genome containing the G*TG* adduct did not increase upon SOS induction. In SOS induced cells, the G*G* and A*G* adducts gave rise predominantly to G-->T and A-->T transversions respectively, targeted to the 5' modified base. In addition, A-->G transitions were detected for the A*G* adduct and low levels of tandem mutations at the 5' modified base as well as the adjacent 5' base were also observed for both adducts. The A*G* adduct was more mutagenic than the G*G* adduct, with a mutation frequency of 6% compared to 1.4% for the latter adduct. No cis-[Pt(NH3)2)2+ intrastrand crosslink-specific mutations were observed for the G*TG* adduct.  相似文献   

17.
The anticancer activity of cisplatin arises from its ability to bind covalently to DNA, forming primarily intrastrand cross-links to adjacent purine residues; the most common adducts involve d(GpG) (65%) and d(ApG) (25%) intrastrand cross-links. The incorporation of these platinum adducts in a B-DNA helix induces local distortions, causing bending and unwinding of the DNA. In this work, we used temperature-dependent UV spectroscopy to investigate the unfolding thermodynamics, and associated ionic effects, of two sets of DNA decamer duplexes containing either cis-[Pt(NH(3))(2)[d(GpG]] or cis-[Pt(NH(3))(2) [d(ApG]] cross-links, and their corresponding unmodified duplexes. The platinated duplexes are less stable and unfold with lower T(M)s (and Delta G degrees s) in enthalpy-driven reactions, which indicates a loss of favorable base-pair stacking interactions. The folding thermodynamics and hydration effects for the first set of decamers containing the d(GpG) cross-link was investigated by a combination of titration calorimetry, density, and ultrasound techniques. The hydration parameters showed an uptake of structural water by the platinated duplex and a release of electrostricted water by the control duplex. Relative to the unmodified duplex, the folding of the platinated duplex at 20 degrees C yielded a positive Delta Delta G degrees term [and positive Delta Delta H-Delta(T Delta S) compensation] and a negative differential volume change. The opposite signs of the Delta Delta G degrees and Delta Delta V terms confirmed its uptake of structural water. Further, solvent-accessible surface areas calculations for a similar pair of dodecamer duplexes indicated that the modified duplex has a 503 oeA(2) higher polar and nonpolar surface area that is exposed to the solvent. Therefore, the incorporation of a platinum adduct in duplex DNA disrupts favorable base-pair stacking interactions, yielding a greater exposure of aromatic bases to the solvent, which in turn immobilizes structural water. The overall results correlate nicely with the results reported in the available structural data of nuclear magnetic resonance solution studies.  相似文献   

18.
19.
The use of substrates containing well defined adducts at precise sites, is required to perform a careful analysis of the toxic and mutagenic potential of a lesion. As a first step in this direction the octamer 5'-d(CCGGCGGT), containing the sequence of the codons 12 d(GGC) and 13 d(GGT) of the human H-ras gene, was reacted with the antitumoral drug cis-diamminedichloroplatinum(II). The platinated products have been purified by HPLC. A first set of experiments, including enzymatic digestions with nuclease P1 followed by alkaline phosphatase and acid-catalysed hydrolysis, allowed us to determine which bases were engaged in the cis-DDP lesions. Our results indicate that only guanine residues were chelated with cisplatin to yield bifunctional adducts. Furthermore, by performing enzymatic digestions with phosphodiesterases, we have located the adducts with respect to the 5' end of the octamer. Among the purified and characterized platinated oligonucleotides, three present a particular interest, since we have shown here that the cis-d(GpG) adduct is precisely situated either at the d(GGC) or at the d(GGT) or at both sites of their sequence.  相似文献   

20.
A factor has been identified in extracts from human HeLa and hamster V79 cells that retards the electrophoretic mobility of several DNA restriction fragments modified with the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin). Binding of the factor to cisplatin-modified DNA was sensitive to pretreatment with proteinase K, establishing that the factor is a protein. Gel mobility shifts were observed with probes containing as few as seven Pt atoms per kilobase of duplex DNA. By competition experiments the dissociation constant, Kd, of the protein from cisplatin-modified DNA was estimated to be (1-20) X 10(-10) M. Protein binding is selective for DNA modified with cisplatin, [Pt(en)Cl2] (en, ethylenediamine), and [Pt(dach)Cl2] (dach, 1,2-diaminocyclohexane) but not with chemotherapeutically inactive trans-diamminedichloroplatinum(II) or monofunctionally coordinating [Pt(dien)Cl]Cl (dien, diethylenetriamine) complexes. The protein also does not bind to DNA containing UV-induced photoproducts. The protein binds specifically to 1,2-intrastrand d(GpG) and d(ApG) cross-links formed by cisplatin, as determined by gel mobility shifts with synthetic 110-bp duplex oligonucleotides; these modified oligomers contained five equally spaced adducts of either cis-[Pt(NH3)2d(GpG) or cis-[Pt(NH3)2d(ApG)]. Oligonucleotides containing the specific adducts cis-[Pt(NH3)2d(GpTpG)], trans-[Pt(NH3)2d(GpTpG)], or cis-[Pt(NH3)2(N3-cytosine)d(G)] were not recognized by the protein. The apparent molecular weight of the protein is 91,000, as determined by sucrose gradient centrifugation of a preparation partially purified by ammonium sulfate fractionation. Binding of the protein to platinum-modified DNA does not require cofactors but is sensitive to treatment with 5 mM MnCl2, CdCl2, CoCl2, or ZnCl2 and with 1 mM HgCl2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号