首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixteen kinds of human immunodeficiency virus (HIV) target genes were cloned by polymerase chain reaction (PCR) amplification, and specific plasmids were constructed as the templates for the expression of these genes in the cell-free system. Similarly, the linear PCR templates of these genes for cell-free protein expression were also constructed by using two PCR amplification process. These different templates can be employed to biosynthesize HIV proteins in the cell-free system simultaneously and can be adapted for some high-throughput processes. HIV protease (P10) was performed as a target protein, and two different templates (plasmid and PCR product) were prepared and used for P10 expression in the Escherichia coli cell-free system. The target protein P10 was detected in sodium dodecyl sulfate–polyacrylamide gel electrophoresis gels either by using a plasmid template or by a PCR template. These results are promising and helpful to develop a high throughput process for drug discovery.  相似文献   

2.
3.
4.
Virus particles are promising vehicles and templates for vaccination, drug delivery and material sciences. Although infectious picornaviruses can be synthesized from genomic or synthetic RNA by cell-free protein expression systems derived from mammalian cell extract, there has been no direct evidence that authentic viral particles are indeed synthesized in the absence of living cells. We purified encephalomyocarditis virus (EMCV) synthesized by a HeLa cell extract-derived, cell-free protein expression system, and visualized the viral particles by transmission electron-microscopy. The in vitro-synthesized EMCV particles were indistinguishable from the in vivo-synthesized particles. Our results validate the use of the cell-free technique for the synthesis of EMCV particles.  相似文献   

5.
6.
7.
One decade after the sequencing of the Plasmodium falciparum genome, 95% of malaria proteins in the genome cannot be expressed in traditional cell-based expression systems, and the targets of the best new leads for antimalarial drug discovery are either not known or not available in functional form. For a disease that kills up to 1 million people per year, routine expression of recombinant malaria proteins in functional form is needed both for the discovery of new therapeutics and for identification of targets of new drugs. We tested the general utility of cell-free systems for expressing malaria enzymes. Thirteen test enzyme sequences were reverse amplified from total RNA, cloned into a plant-like expression vector, and subjected to cell-free expression in a wheat germ system. Protein electrophoresis and autoradiography confirmed the synthesis of products of expected molecular masses. In rare problematic cases, truncated products were avoided by using synthetic genes carrying wheat codons. Scaled-up production generated 39 to 354 μg of soluble protein per 10 mg of translation lysate. Compared to rare proteins where cell-based systems do produce functional proteins, the cell-free yields are comparable or better. All 13 test products were enzymatically active, without failure. This general path to produce functional malaria proteins should now allow the community to access new tools, such as biologically active protein arrays, and lead to the discovery of new chemical functions, structures, and inhibitors of previously inaccessible malaria gene products.  相似文献   

8.
The translation machinery is the engine of life. Extracting the cytoplasmic milieu from a cell affords a lysate capable of producing proteins in concentrations reaching to tens of micromolar. Such lysates, derivable from a variety of cells, allow the facile addition and subtraction of components that are directly or indirectly related to the translation machinery and/or the over-expressed protein. The flexible nature of such cell-free expression systems, when coupled with high throughput monitoring, can be especially suitable for protein engineering studies, allowing one to bypass multiple steps typically required using conventional in vivo protein expression.  相似文献   

9.
Internal ribosome entry site (IRES) elements found in the 5′ untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems.  相似文献   

10.
In this study, we describe a cell-free protein synthesis consolidated with polymerase chain reaction (PCR)-based synthetic gene assembly that allows for streamlined translation of genetic information. In silico-designed fragments of target genes were PCR-assembled and directly expressed in a cell-free synthesis system to generate functional proteins. This method bypasses the procedures required in conventional cell-based gene expression methods, integrates gene synthesis and cell-free protein synthesis, shortens the time to protein production, and allows for facile regulation of gene expression by manipulating the oligomer sequences used for gene synthesis. The strategy proposed herein expands the flexibility and throughput of the protein synthesis process, a fundamental component in the construction of synthetic biological systems.  相似文献   

11.
12.
13.
Cell-free protein synthesis systems can synthesize proteins with high speed and accuracy, but produce only a low yield because of their instability over time. Here we review our recent advances in a cell-free protein synthesis system prepared from wheat embryos. We first addressed and resolved the source of the instability of existing systems in light of endogenous ribosome-inactivating proteins. We found that conventional wheat germ extracts contained the RNA N-glycosidase tritin and other inhibitors such as thionin, ribonucleases, deoxyribonucleases, and proteases that originate from the endosperm and inhibit translation. Extensive washing of wheat embryos to eliminate endosperm contaminants has resulted in extracts with a high degree of stability and activity. To maximize the translation yield and throughput of the system, we then focused on developing the following issues: optimization of the ORF flanking regions, a new strategy to construct PCR-generated DNAs for screening, and design of an expression vector for large-scale protein production. The resulting system achieves high-throughput expression, with a PCR-directed system at least 50 genes that can be translated in parallel, yielding between 0.1 and 2.3 mg of protein by one person within 2 days. Under the dialysis mode of reaction, the system with the expression vector can maintain productive translation for 14 days. The cell-free system described here bypasses most of the biological processes and lends itself to robotic automation for high-throughput expression of genetic information, thus opening up many possibilities in the post-genome era.  相似文献   

14.
In vitro translation systems are used to investigate translational mechanisms and to synthesize proteins for characterization. Most available mammalian cell-free systems have reduced efficiency due to decreased translation initiation caused by phosphorylation of the initiation factor eIF2alpha on Ser51. We describe here a novel cell-free protein synthesis system using extracts from cultured mouse embryonic fibroblasts that are homozygous for the Ser51 to- Ala mutation in eIF2alpha (A/A cells). The translation efficiency of a capped and polyadenylated firefly luciferase mRNA in A/A cell extracts was 30-fold higher than in wild-type extracts. Protein synthesis in extracts from A/A cells was active for at least 2 h and generated up to 20 microg/mL of luciferase protein. Additionally, the A/A cell-free system faithfully recapitulated the selectivity of in vivo translation for mRNA features; translation was stimulated by a 5'-end cap (m7GpppN) and a 3'-end poly(A) tail in a synergistic manner. The system also showed similar efficiencies of cap-dependent and IRES-mediated translation (EMCV IRES). Significantly, the A/A cell-free system supported the post-translational modification of proteins, as shown by glycosylation of the HIV type-1 gp120 and cleavage of the signal peptide from beta-lactamase. We propose that cell-free systems from A/A cells can be a useful tool for investigating mechanisms of mammalian mRNA translation and for the production of recombinant proteins for molecular studies. In addition, cell-free systems from differentiated cells with the Ser51Ala mutation should provide a means for investigating cell type-specific features of protein synthesis.  相似文献   

15.
An approach for designing individual expression environments that reduce or prevent protein aggregation and precipitation is described. Inefficient folding of difficult proteins in unfavorable translation environments can cause significant losses of overexpressed proteins as precipitates or inclusion bodies. A number of chemical chaperones including alcohols, polyols, polyions or polymers are known to have positive effects on protein stability. However, conventional expression approaches can use such stabilizing agents only post-translationally during protein extraction and purification. Proteins that already precipitate inside of the producer cells cannot be addressed. The open nature of cell-free protein expression systems offers the option to include single chemicals or cocktails of stabilizing compounds already into the expression environment. We report an approach for systematic screening of stabilizers in order to improve the solubility and quality of overexpressed proteins co-translationally. A comprehensive list of representative protein stabilizers from the major groups of naturally occurring chemical chaperones has been analyzed and their concentration ranges tolerated by cell-free expression systems have been determined. As a proof of concept, we have applied the method to improve the yield of proteins showing instability and partial precipitation during cell-free synthesis. Stabilizers that co-translationally improve the solubility and functional folding of human glucosamine 6-phosphate N-acetyltransferase have been identified and cumulative effects of stabilizers have been studied.  相似文献   

16.
Meiotic maturation stimulates a change in the translation of stored mRNAs: mRNAs encoding proteins needed for growth of oocytes are translated before meiotic maturation, whereas those encoding proteins required for cleavage are translated after meiotic maturation. Studies of translational regulation during meiotic maturation have been limited by the lack of translationally active cell-free supernatants. Starfish oocytes are ideal for preparing cell-free translation systems because experimental application of the hormone 1-methyladenine induces their maturation, synchronizing meiosis. We have prepared such systems from both immature and mature oocytes of starfish. Changes in protein synthesis rates and the specificity of proteins synthesized in these cell-free translation supernatants mimic those seen in vivo. Supernatants both from immature and mature oocytes have a high capacity to initiate new translation because 90% of the proteins made are newly initiated from mRNAs. Cell-free supernatants from mature oocytes have a much higher rate of initiation of translation than those from immature oocytes and use the 43S preinitiation complexes more efficiently in initiation of translation. Similarly, we have shown that mRNAs and initiation factors are rate limiting in cell-free translation systems prepared from immature oocytes. In addition, cell-free translation systems prepared from immature oocytes are only slightly, if at all, inhibitory to cell-free translation systems from mature oocytes. Thus, soluble inhibitors, if they exist, are rapidly converted by cell-free supernatants from mature oocytes. The similarities between translation in our starfish cell-free translation systems and in intact oocytes suggests that the cell-free translation systems will be useful tools for further studies of maturation events and translational control during meiosis.  相似文献   

17.
18.
The adaptation of organisms to a parasitic life style is often accompanied by the emergence of novel biochemical pathways absent in free-living organisms. As a result, the genomes of specialized parasitic organisms often code for a large number (>50%) of proteins with no detectable homology or predictable function. Although understanding the biochemical properties of these proteins and their roles in parasite biogenesis is the next challenge of molecular parasitology, analysis tools developed for free-living organisms are often inadequate for this purpose. Here we attempt to solve some of these problems by developing a methodology for the rapid production of expressed proteomes in cell-free systems based on parasitic organisms. To do so we take advantage of Species Independent Translational Sequences (SITS), which can efficiently mediate translation initiation in any organism. Using these sequences we developed a single-tube in vitro translation system based on the parasitic protozoan Leishmania tarentolae. We demonstrate that the system can be primed directly with SITS containing templates constructed by overlap extension PCR. To test the systems we simultaneously amplified 31 of L. tarentolae's putative translation initiation factors and phosphatases directly from the genomic DNA and subjected them to expression, purification and activity analysis. All of the amplified products produced soluble recombinant proteins, and putative phosphatases could be purified to at least 50% purity in one step. We further compared the ability of L. tarentolae and E. coli based cell-free systems to express a set of mammalian, L. tarentolae and Plasmodium falciparum Rab GTPases in functional form. We demonstrate that the L. tarentolae cell-free system consistently produced higher quality proteins than E. coli-based system. The differences were particularly pronounced in the case of open reading frames derived from P. falciparum. The implications of these developments are discussed.  相似文献   

19.
A highly effective cell-free system for protein synthesis was obtained from rabbit reticulocytes and for the first time used for synthesis of biologically active chicken interferon. The optimal conditions for translation of its mRNA were developed. The translation efficacy in the cell-free system was 10-50 times higher than that in the culture of heterologous cells. The higher the purity level of RNA, the higher the translation level. With respect to poly (A+) RNA sedimenting in the sucrose gradient 9S the efficacy reached 2560 units per 1 microgram of RNA. By the content of poly (A), sequences and rate of the sedimentation, mRNA of the chicken interferon was similar to that of the human fibroblast cell interferon. The possible translation of mRNA of the chicken interferon at low concentrations of exogenic potassium ions in the cell-free system is explained by production of interferon in infected cells where the concentration of the intracellular potassium significantly decreases which is indicative of the mRNA interferon similarity with virus templates. It was found that only albino New Zealand rabbits, but also chinchilla may be used for preparation of the cell-free protein synthesizing system. Various exogenic templates in the mRNA-dependent cell-free system prepared from reticulocyte nonfractionated lysate by treatment with micrococcal nuclease stimulated the protein synthesis by 7-15 times.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号