首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The renewed interest in the use of hybrid zones for studying speciation calls for the identification and study of hybrid zones across a wide range of organisms, especially in long-lived taxa for which it is often difficult to generate interpopulation variation through controlled crosses. Here, we report on the extent and direction of introgression between two members of the "model tree" genus Populus: Populus alba (white poplar) and Populus tremula (European aspen), across a large zone of sympatry located in the Danube valley. We genotyped 93 hybrid morphotypes and samples from four parental reference populations from within and outside the zone of sympatry for a genome-wide set of 20 nuclear microsatellites and eight plastid DNA restriction site polymorphisms. Our results indicate that introgression occurs preferentially from P. tremula to P. alba via P. tremula pollen. This unidirectional pattern is facilitated by high levels of pollen vs. seed dispersal in P. tremula (pollen/seed flow = 23.9) and by great ecological opportunity in the lowland floodplain forest in proximity to P. alba seed parents, which maintains gene flow in the direction of P. alba despite smaller effective population sizes (N(e)) in this species (P. alba N(e)c. 500-550; P. tremula N(e)c. 550-700). Our results indicate that hybrid zones will be valuable tools for studying the genetic architecture of the barrier to gene flow between these two ecologically divergent Populus species.  相似文献   

2.
We used a crossing experiment to investigate post-zygotic barriers that might limit introgression between a pair of closely-related, gynodioecious plant species--the widespread weed Silene vulgaris and the local Swedish endemic S. uniflora ssp. petraea. The study not only considered the effects of hybridization on conventionally-used (primary) fitness components such as seed set and progeny survival, but also provided a test for the effects of interspecific hybridization on characters with more subtle or habitat-specific effects on fitness. We detected highly significant paternal effects on seed germination properties, with the germination characteristics of hybrid seed resembling those of the species that served as the pollen donor. These paternal effects on germination represent a potentially strong barrier to interspecific introgression in the two species' natural habitats, where an inappropriate germination response in the habitat of the maternal parent may lead to the failure of seedling establishment. Interspecific crosses had weak or variable effects on progeny survival, flowering and sex ratio, but these effects could not be interpreted in terms of barriers to introgression. Our results indicate that nuclear restorers in S. vulgaris have the capacity to suppress cytoplasmic male-sterility genes in its endemic congener.  相似文献   

3.
Interspecific hybridization is a route for transgenes from genetically modified (GM) animals to invade wild populations, yet the ecological effects and potential risks that may emerge from such hybridization are unknown. Through experimental crosses, we demonstrate transmission of a growth hormone transgene via hybridization between a candidate for commercial aquaculture production, GM Atlantic salmon (Salmo salar) and closely related wild brown trout (Salmo trutta). Transgenic hybrids were viable and grew more rapidly than transgenic salmon and other non-transgenic crosses in hatchery-like conditions. In stream mesocosms designed to more closely emulate natural conditions, transgenic hybrids appeared to express competitive dominance and suppressed the growth of transgenic and non-transgenic (wild-type) salmon by 82 and 54 per cent, respectively. To the best of our knowledge, this is the first demonstration of environmental impacts of hybridization between a GM animal and a closely related species. These results provide empirical evidence of the first steps towards introgression of foreign transgenes into the genomes of new species and contribute to the growing evidence that transgenic animals have complex and context-specific interactions with wild populations. We suggest that interspecific hybridization be explicitly considered when assessing the environmental consequences should transgenic animals escape to nature.  相似文献   

4.
The use of admixed human populations to scan the genome for chromosomal segments affecting complex phenotypic traits has proved a powerful analytical tool. However, its potential in other organisms has not yet been evaluated. Here, we use DNA microsatellites to assess the feasibility of this approach in hybrid zones between two members of the 'model tree' genus Populus: Populus alba (white poplar) and Populus tremula (European aspen). We analyzed samples of both species and a Central European hybrid zone (N=544 chromosomes) for a genome-wide set of 19 polymorphic DNA microsatellites. Our results indicate that allele frequency differentials between the two species are substantial (mean delta=0.619+/-0.067). Background linkage disequilibrium (LD) in samples of the parental gene pools is moderate and should respond to sampling schemes that minimize drift and account for rare alleles. LD in hybrids decays with increasing number of backcross generations as expected from theory and approaches background levels of the parental gene pools in advanced generation backcrosses. Introgression from P. tremula into P. alba varies strongly across marker loci. For several markers, alleles from P. tremula are slightly over-represented relative to neutral expectations, whereas a single locus exhibits evidence of selection against P. tremula genotypes. We interpret our results in terms of the potential for admixture mapping in these two ecologically divergent Populus species, and we validate a modified approach of studying genotypic clines in 'mosaic' hybrid zones.  相似文献   

5.
Hoolahan AH  Blok VC  Gibson T  Dowton M 《Genetica》2011,139(11-12):1509-1519
Animal mtDNA is typically assumed to be maternally inherited. Paternal mtDNA has been shown to be excluded from entering the egg or eliminated post-fertilization in several animals. However, in the contact zones of hybridizing species and populations, the reproductive barriers between hybridizing organisms may not be as efficient at preventing paternal mtDNA inheritance, resulting in paternal leakage. We assessed paternal mtDNA leakage in experimental crosses of populations of a cyst-forming nematode, Globodera pallida. A UK population, Lindley, was crossed with two South American populations, P5A and P4A. Hybridization of these populations was supported by evidence of nuclear DNA from both the maternal and paternal populations in the progeny. To assess paternal mtDNA leakage, a ~3.4?kb non-coding mtDNA region was analyzed in the parental populations and in the progeny. Paternal mtDNA was evident in the progeny of both crosses involving populations P5A and P4A. Further, paternal mtDNA replaced the maternal mtDNA in 22 and 40?% of the hybrid cysts from these crosses, respectively. These results indicate that under appropriate conditions, paternal leakage occurs in the mtDNA of parasitic nematodes, and supports the hypothesis that hybrid zones facilitate paternal leakage. Thus, assumptions of strictly maternal mtDNA inheritance may be frequently violated, particularly when divergent populations interbreed.  相似文献   

6.
Despite the presence of reproductive barriers between species, interspecific gene introgression has been documented in a range of natural systems. Comparing patterns of genetic introgression in biparental versus matrilineal markers can potentially reveal sex‐specific barriers to interspecific gene flow. Hybridization has been documented in the freshwater turtles Graptemys geographica and G. pseudogeographica, whose ranges are largely sympatric. Morphological differentiation between the species is restricted to females, with female G. geographica possessing large heads and jaws compared to the narrow heads of G. pseudogeographica females. If hybrid females are morphologically intermediate, they may be less successful at exploiting parental feeding niches, thereby limiting the introgression of maternally inherited, but not biparental, molecular markers. We paired sequence data with stable isotope analysis and examined sex‐specific genetic introgression and trophic differentiation in sympatric populations of G. geographica and G. pseudogeographica. We observed introgression from G. pseudogeographica into G. geographica at three nuclear loci, but not at the mitochondrial locus. Analysis of ?15N and ?13C was consistent with species differences in trophic positioning in females, but not males. These results suggest that ecological divergence in females may reduce the opportunity for gene flow in this system.  相似文献   

7.
When reproductive barriers break down, interspecific hybridization can lead to gene flow between evolutionarily distinct species. Studying the fate of these introgressing elements can offer valuable insights into the factors contributing to reproductive isolation. We have identified a population of false map turtles (Graptemys pseudogeographica) that hybridized historically with the common map turtle (Graptemys geographica), but were subsequently isolated from interbreeding for several generations by unique geological events. Although many studies conclude that genic interactions involving sex chromosomes impact the introgression of mitochondrial or nuclear genomes, Graptemys turtles have environmental sex determination, and thus introgression can be explored while controlling for the effects of sex‐specific heterogameity. We identified and sequenced a species‐specific mitochondrial control region marker, as well as two nuclear markers (ODC and HNFAL), in turtles from across the ranges of these species. We found both nuclear and mitochondrial introgression in our study population, and present evidence consistent with the proposed time range of reproductive contact and isolation. We also report an absence of cytonuclear or linkage disequilibrium among markers, indicating that some important pre‐ and postzygotic barriers to gene flow that characterize other systems are absent in Graptemys. Finally, we show that Graptemys turtles have a complex molecular evolutionary history, and that leaks in reproductive barriers probably occur frequently. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 405–417.  相似文献   

8.
Uncovering the genetic architecture of species differences is of central importance for understanding the origin and maintenance of biological diversity. Admixture mapping can be used to identify the number and effect sizes of genes that contribute to the divergence of ecologically important traits, even in taxa that are not amenable to laboratory crosses because of their long generation time or other limitations. Here, we apply admixture mapping to naturally occurring hybrids between two ecologically divergent Populus species. We map quantitative trait loci for eight leaf morphological traits using 77 mapped microsatellite markers from all 19 chromosomes of Populus. We apply multivariate linear regression analysis allowing the modeling of additive and non-additive gene action and identify several candidate genomic regions associated with leaf morphology using an information-theoretic approach. We perform simulation studies to assess the power and limitations of admixture mapping of quantitative traits in natural hybrid populations for a variety of genetic architectures and modes of gene action. Our results indicate that (1) admixture mapping has considerable power to identify the genetic architecture of species differences if sample sizes and marker densities are sufficiently high, (2) modeling of non-additive gene action can help to elucidate the discrepancy between genotype and phenotype sometimes seen in interspecific hybrids, and (3) the genetic architecture of leaf morphological traits in the studied Populus species involves complementary and overdominant gene action, providing the basis for rapid adaptation of these ecologically important forest trees.  相似文献   

9.
Hybrid bridges to gene flow: a case study in milkweeds (Asclepias)   总被引:1,自引:0,他引:1  
Natural hybridization occurs throughout areas of sympatry for the North American milkweeds Asclepias exaltata and A. syriaca (Asclepiadaceae), even though the formation of F1 hybrid seed is a rare event. For introgressive hybridization to proceed, F1 and advanced hybrids must be released from reproductive barriers and successfully mate with one or both parental species. I investigated the mating system of natural hybrids between A. exaltata and A. syriaca in three populations in Shenandoah National Park, Virginia. Allozyme data and a maximum-likelihood procedure were used to estimate the frequency of six genotypic classes (parentals, F1, F2, and backcrosses) of the hybridizing populations, the pollinia received by hybrid plants, and the paternal parents of seeds produced by hybrids. F1 hybrids, backcross A. syriaca, and parental A. syriaca individuals were common in three hybrid populations. Even though self-pollinations and interhybrid pollinations were common, F2 seed production and the occurrence of F2 individuals were rare in hybrid populations. Hybrid plants received more pollen from A. syriaca than A. exaltata, which resulted in the production of more backcross-A. syriaca seed than backcross-A. exaltata seed. Asclepias exaltata was rare in the hybrid populations, but A. exaltata pollinia were received by hybrids and this species sired between 15% and 36% of the seeds produced on hybrids. The potential for introgression with A. exaltata populations is lower because this species is unsuccessful as the maternal parent in interspecific and backcross hand-pollinations. The asymetry of hybridization with A. syriaca as the maternal parent is further supported by the incorporation of maternally inherited chloroplast DNA markers in hybrids. Hybrid milkweeds frequently backcross with both parental species and may be released from the reproductive barriers that limit the formation of F1 hybrids in natural populations. The direction of interspecific gene flow and introgression in milkweeds is influenced by the reproductive biology of hybrids, the constituency of the surrounding population, and failure of some crosses to produce seeds. Finally, introgressive hybridization remains an important evolutionary force even when the initial formation of F1 hybrids in natural populations is rare.  相似文献   

10.
Spatial genetic structure (SGS) holds the key to understanding the role of clonality in hybrid persistence, but multilocus SGS in hybrid zones has rarely been quantified. Here, the aim was to fill this gap for natural hybrids between two diploid, ecologically divergent European tree species with mixed sexual/asexual reproduction, Populus alba and P. tremula. Nuclear microsatellites were used to quantify clonality, SGS, and historical gene dispersal distances in up to 407 trees from an extensive Central European hybrid zone including three subpopulation replicates. The focus was on P. x canescens and its backcross parent P. alba, as these two genotypic classes co-occur and interact directly. Sexual recombination in both taxa was more prominent than previously thought, but P. x canescens hybrids tended to build larger clones extending over larger areas than P. alba. The 3.4 times stronger SGS in the P. x canescens genet population was best explained by a combination of interspecific gene flow, assortative mating, and increased clonality in hybrids. Clonality potentially contributes to the maintenance of hybrid zones of P. alba and P. tremula in time and space. Both clonality and SGS need to be taken into account explicitly when designing population genomics studies of locus-specific effects in hybrid zones.  相似文献   

11.
We investigate the question of naturally occurring interspecific hybrids between two forest trees: the native North American butternut (Juglans cinerea L.) and the introduced Japanese walnut (Juglans ailantifolia Carrière). Using nuclear and chloroplast DNA markers, we provide evidence for 29 F1 and 22 advanced generation hybrids in seven locations across the eastern and southern range of the native species. Two locations show extensive admixture (95% J. ailantifolia and hybrids) while other locations show limited admixture. Hybridization appears to be asymmetrical with 90.9 per cent of hybrids having J. ailantifolia as the maternal parent. This is, to our knowledge, the first genetic data supporting natural hybridization between these species. The long-term outcome of introgression could include loss of native diversity, but could also include transfer of useful traits from the introduced species.  相似文献   

12.
To understand how species evolve and adapt to changing environments, it is important to study gene flow and introgression due to their influence on speciation and radiation events. Here, we apply a novel experimental system for investigating these mechanisms using natural populations. The system is based on two fungal sister species with morphological and ecological similarities occurring in overlapping habitats. We examined introgression between these species by conducting whole genome sequencing of individuals from populations in North America and Europe. We assessed genome-wide nucleotide divergence and performed crossing experiments to study reproductive barriers. We further used ABBA–BABA statistics together with a network analysis to investigate introgression, and conducted demographic modelling to gain insight into divergence times and introgression events. The results revealed that the species are highly divergent and incompatible in vitro. Despite this, small regions of introgression were scattered throughout the genomes and one introgression event likely involves a ghost population (extant or extinct). This study demonstrates that introgression can be found among divergent species and that population histories can be studied without collections of all the populations involved. Moreover, the experimental system is shown to be a useful tool for research on reproductive isolation in natural populations.  相似文献   

13.
Recent studies have shown that certain host populations of the cereal rust mite Abacarus hystrix are highly specialized in their host use and it is likely that reproductive isolation exists between them. Here I verified this expectation by testing for reproductive barriers between ryegrass and quackgrass populations of A. hystrix. I performed reciprocal crosses between individuals from both populations and observed results of crosses. Leaves of the three grass species, ryegrass, quackgrass and wheat, were used as mating arenas. I used two criteria to determine reproductive barriers between strains: the proportion of female progeny and viability of progeny. If studied populations of this haplodiploid species are reproductively isolated a male-biased sex ratio and/or hybrid progeny of reduced viability would be expected. I found that in the presence of quackgrass and ryegrass pre-zygotic barriers between studied populations exists. On wheat I observed asymmetry in reproductive barriers. Between females from quackgrass and males from ryegrass a pre-zygotic barrier existed (only males obtained). However, the opposite reciprocal cross (females from ryegrass and males from quackgrass) produced progeny of both sexes. A male-biased sex ratio and low adult emergence suggests that post-zygotic mechanisms acted here. Low viability of progeny obtained from crosses in which females from ryegrass were engaged suggests that the origin of the female nymph acted as a predictor of hybrid inviability. The pattern of sterility observed in the cereal rust mite indicates that in the presence of three hosts (ryegrass, quackgrass and wheat) pre- and post-zygotic reproductive barriers between quackgrass and ryegrass populations of this mite exist. In addition to host fidelity (which acts as pre-zygotic barrier) there are post-zygotic barriers to gene flow.  相似文献   

14.
? Premise of the study: Poplars and their hybrids are seen as important candidates for bioenergy initiatives. However, many concerns have been raised about large-scale plantations of new poplar cultivars. The deployment of such plants with novel traits brings the risk of potential spread of novel genome regions (including exotic genes, transgenes, or other heritable modifications) into natural populations of related species. The possibility of introgression is especially high in poplars because reproductive barriers between species are weak. Knowledge of the frequency of hybridization between cultivated trees and natural populations is one important step in the risk-assessment process. ? Methods: We studied the rate of spontaneous hybridization from two sexually mature poplar plantations into adjacent natural populations of Populus deltoides and P. balsamifera. The two plantations, both in eastern Canada, contain many different complex hybrid clones with components from exotic species, mostly P. nigra, P. trichocarpa, and P. maximowiczii. We analyzed 12 species-specific single nucleotide polymorphisms from six different genes in 5373 offspring sampled from the natural populations. ? Results: Contributions from all three exotics were found in the offspring, confirming low reproductive barriers among poplar species in these sections. The frequency of hybrid offspring varied among pollen donors, recipient populations, and years. ? Conclusions: The remarkably high rate of hybridization that was found in the smallest natural population sampled suggests that small peripheral populations carry a higher risk of introgression. These results could be used as a starting point for developing regulatory guidelines for the introduction of plants with novel traits.  相似文献   

15.

Background and Aims

In habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences.

Methods

Phenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured.

Key Results

In both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence.

Conclusions

The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation.  相似文献   

16.
Summary The cloning of white spruce (Picea glauca) mitochondrial DNA homologous to the cytochrome oxidase II and ATPase genes of maize is described. These probes were used to define restriction fragment length polymorphisms which distinguish the white, Engelmann (P. engelmannii) and Sitka spruce (P. sitchensis) populations that occur in British Columbia. Analysis of progeny from crosses between the species revealed that mitochondrial DNA was maternally inherited in all cases (32 progeny from five independent crosses). The inheritance of chloroplast DNA was determined using a probe described previously; in this case, all progeny exhibited paternal inheritance (27 progeny from four crosses). Mitochondrial and chloroplast probes were used to test trees from zones of introgression between coastal (Sitka) and interior spruces (white and Engelmann). In most cases mitochondria and chloroplasts within individuals were contributed by different species. The data shows that there is a significant Sitka spruce component in trees east of the coastal watershed in British Columbia.  相似文献   

17.
We have identified 53 DNA (single nucleotide, microsatellite, and insertion-deletion) polymorphisms within 12 candidate genes potentially involved in ecological differences between Populus alba and P. tremula, two hybridizing European forest trees. The genes represent candidates for functional roles associated with abiotic or biotic stress response, cross-talk, phenology, and leaf development. Distributions within sequences, intraspecific levels of diversity, and genetic divergence (F(ST) ) between species are reported for each polymorphism, as are haplotype frequencies for each gene. The markers will be used for population genomic studies of the barrier to gene flow between these two ecologically divergent forest trees.  相似文献   

18.
Intense structuring of plant breeding populations challenges the design of the training set (TS) in genomic selection (GS). An important open question is how the TS should be constructed from multiple related or unrelated small biparental families to predict progeny from individual crosses. Here, we used a set of five interconnected maize (Zea mays L.) populations of doubled-haploid (DH) lines derived from four parents to systematically investigate how the composition of the TS affects the prediction accuracy for lines from individual crosses. A total of 635 DH lines genotyped with 16,741 polymorphic SNPs were evaluated for five traits including Gibberella ear rot severity and three kernel yield component traits. The populations showed a genomic similarity pattern, which reflects the crossing scheme with a clear separation of full sibs, half sibs, and unrelated groups. Prediction accuracies within full-sib families of DH lines followed closely theoretical expectations, accounting for the influence of sample size and heritability of the trait. Prediction accuracies declined by 42% if full-sib DH lines were replaced by half-sib DH lines, but statistically significantly better results could be achieved if half-sib DH lines were available from both instead of only one parent of the validation population. Once both parents of the validation population were represented in the TS, including more crosses with a constant TS size did not increase accuracies. Unrelated crosses showing opposite linkage phases with the validation population resulted in negative or reduced prediction accuracies, if used alone or in combination with related families, respectively. We suggest identifying and excluding such crosses from the TS. Moreover, the observed variability among populations and traits suggests that these uncertainties must be taken into account in models optimizing the allocation of resources in GS.  相似文献   

19.
Incomplete reproductive isolation promotes gene flow between diverging taxa. However, any gene encoding for traits involved in the reproductive barriers will be less prone to introgression than neutral markers. Comparing introgression rates among loci is thus informative of the number and functions of loci involved in the reproductive barriers. This study aimed at identifying possible mechanisms of restriction to gene flow across a zone of recent secondary contact between Larus argentatus and Larus cachinnans by comparing introgression patterns for nine microsatellite loci, a fragment of mitochondrial DNA and a set of phenotypic traits. The low linkage disequilibrium between neutral nuclear markers indicated introgression without any barrier to gene flow. However, asymmetric introgression of mitochondrial DNA suggested that interspecific crosses may be more successful in one direction. The introgression rate for phenotypic traits was variable and low compared to neutral molecular markers. This was particularly evident in colouration of bare parts: individuals with intermediate colouration were scarcer in sympatry than expected if the genomes recombined freely. We hypothesized that one of these variables, the orbital ring colour, may play a role in mate choice, acting as an incomplete premating barrier through assortative mating. This study emphasizes that multilocus approaches are useful to discriminate among possible mechanisms responsible for the maintenance of hybrid zones.  相似文献   

20.
The aim of this study is to investigate the evolution of intrinsic postzygotic isolation within and between populations of Mimulus guttatus and Mimulus nasutus. We made 17 intraspecific and interspecific crosses, across a wide geographical scale. We examined the seed germination success and pollen fertility of reciprocal F1 and F2 hybrids and their pure-species parents, and used biometrical genetic tests to distinguish among alternative models of inheritance. Hybrid seed inviability was sporadic in both interspecific and intraspecific crosses. For several crosses, Dobzhansky–Muller incompatibilities involving nuclear genes were implicated, while two interspecific crosses revealed evidence of cytonuclear interactions. Reduced hybrid pollen fertility was found to be greatly influenced by Dobzhansky–Muller incompatibilities in five out of six intraspecific crosses and nine out of 11 interspecific crosses. Cytonuclear incompatibilities reduced hybrid fitness in only one intraspecific and one interspecific cross. This study suggests that intrinsic postzygotic isolation is common in hybrids between these Mimulus species, yet the particular hybrid incompatibilities responsible for effecting this isolation differ among the populations tested. Hence, we conclude that they evolve and spread only at the local scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号