首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
VanD-type resistance to glycopeptides in Enterococcus faecium BM4339 is due to constitutive synthesis of D-alanyl-D-lactate-terminating peptidoglycan precursors (B. Périchon, P. Reynolds, and P. Courvalin, Antimicrob. Agents Chemother. 41:2016-2018, 1997). The sequence of a 5,780-bp fragment was determined and revealed six open reading frames. The 3' distal part encoded the VanHD dehydrogenase, the VanD ligase, and the VanXD DD-dipeptidase, which were highly similar to the corresponding proteins in VanA and VanB types of resistance. The deduced VanYD protein was homologous to penicillin-binding proteins that display DD-carboxypeptidase activity. The 5' end coded for the putative VanRD-VanSD two-component regulatory system. Due to a frameshift mutation in the chromosomal ddl gene, BM4339 produced an impaired D-alanine:D-alanine ligase. However, since expression of the resistance genes is constitutive, growth of E. faecium BM4339 was not dependent on the presence of glycopeptides in the culture medium.  相似文献   

2.
Glycopeptides and beta-lactams are the major antibiotics available for the treatment of infections due to Gram-positive bacteria. Emergence of cross-resistance to these drugs by a single mechanism has been considered as unlikely because they inhibit peptidoglycan polymerization by different mechanisms. The glycopeptides bind to the peptidyl-D-Ala(4)-D-Ala(5) extremity of peptidoglycan precursors and block by steric hindrance the essential glycosyltransferase and D,D-transpeptidase activities of the penicillin-binding proteins (PBPs). The beta-lactams are structural analogues of D-Ala(4)-D-Ala(5) and act as suicide substrates of the D,D-transpeptidase module of the PBPs. Here we have shown that bypass of the PBPs by the recently described beta-lactam-insensitive L,D-transpeptidase from Enterococcus faecium (Ldt(fm)) can lead to high level resistance to glycopeptides and beta-lactams. Cross-resistance was selected by glycopeptides alone or serially by beta-lactams and glycopeptides. In the corresponding mutants, UDP-MurNAc-pentapeptide was extensively converted to UDP-MurNAc-tetrapeptide following hydrolysis of D-Ala(5), thereby providing the substrate of Ldt(fm). Complete elimination of D-Ala(5), a residue essential for glycopeptide binding, was possible because Ldt(fm) uses the energy of the L-Lys(3)-D-Ala(4) peptide bond for cross-link formation in contrast to PBPs, which use the energy of the D-Ala(4)-D-Ala(5) bond. This novel mechanism of glycopeptide resistance was unrelated to the previously identified replacement of D-Ala(5) by D-Ser or D-lactate.  相似文献   

3.
4.
We have constructed a Bacillus subtilis strain in which expression of a vanH::lacZ gene fusion is regulated by VanR and VanS of Enterococcus faecium. This construct allows a nonpathogenic bacterial strain to be used as a model system for studying regulation of vancomycin resistance. Antibiotics and enzymes that affect cell wall biosynthesis and stability were tested for the ability to induce lacZ expression. As a result, fosfomycin and D-cycloserine were added to the group of peptidoglycan synthesis inhibitors shown to induce expression from the vanH promoter. Induction by cell wall hydrolytic enzymes, as well as by antibiotics whose actions may lead to the accumulation of chemically different peptidoglycan precursors, raises the possibility that models that postulate induction by peptidoglycan [correction of peptidodoglycan] precursors are wrong.  相似文献   

5.
Abstract High-level resistance to glycopeptides in Enterococcus faecium is associated with an inducible 39-kDa cytoplasmic membrane protein. The present paper shows that such glycopeptide-resistant E. faecium strains can not only be isolated in a definite clinical setting but also from waste water of sewage treatment plants. Nearer characterization of these and of clinical isolates by resistance pattern, biotyping, and genotyping (DNA-fingerprinting with pulsed-field get electrophoresis) has shown that different glycopeptide-resistant E. faecium strains have been isolated from clinical sources and from waste water.  相似文献   

6.
The beta-lactam antibiotics remain the most commonly used to treat severe infections. Because of structural similarity between the beta-lactam ring and the d-alanyl(4)-d-alanine(5) extremity of bacterial cell wall precursors, the drugs act as suicide substrates of the dd-transpeptidases that catalyze the last cross-linking step of cell wall assembly. Here, we show that this mechanism of action can be defeated by a novel type of transpeptidase identified for the first time by reverse genetics in abeta-lactam-resistant mutant of Enterococcus faecium. The enzyme, Ldt(fm), catalyzes in vitro the cross-linking of peptidoglycan subunits in a beta-lactam-insensitive ld-transpeptidation reaction. The specificity of Ldt(fm) for the l-lysyl(3)-d-alanine(4) peptide bond of tetrapeptide donors accounts for resistance because the substrate does not mimic beta-lactams in contrast to d-alanyl(4)-d-alanine(5) in the pentapeptide donors required for dd-transpeptidation. Ldt(fm) homologues are encountered sporadically among taxonomically distant bacteria, indicating that ld-transpeptidase-mediated resistance may emerge in various pathogens.  相似文献   

7.
M C Glick 《Biochemistry》1979,18(12):2525-2532
Comparisons of membrane glycopeptides from baby hamster kidney fibroblasts (BHK21/C13) and a clone transformed by Rous sarcoma virus (C13/B4) were made by using cells metabolically labeled with radioactive D-glucose and L-fucose. Most of the glycopeptides were metabolically labeled with both the general and the specific glycoprotein precursors. The glycopeptides obtained from the cell surface by controlled trypsinization were representative of the surface membrane as shown by comparing them with those of purified membrane preparations. The trypsin-removable glycopeptides from both cell types were further processed and examined by successive chromatography on Sephadex G-50 and DEAE-cellulose. The chromatographic distribution patterns showed that each cell type had glycopeptides of similar characteristics, although the proportions of the glycopeptides differed dramatically between the two cell types. After transformation there was an increase in the larger, more highly charged glycopeptides. This was verified by the increased sialic acid content in these glycopeptides. Some of the glycopeptides were homogeneous after the size and charge separations, since a variety of procedures did not separate them further. The apparent homogeneity and reasonably few species obtained may be due to the methods of isolation, with the procedures selecting particular glycopeptides from the external portion of the membrane. These results corroborate the concept and show for the first time that virus transformation is accompanied by an increase in certain species of glycopeptides rather than de novo synthesis.  相似文献   

8.
The evolution and molecular mechanisms of vancomycin resistance in Staphylococcus aureus were reviewed. Case reports and research studies on biochemestry, electron microscopy and molecular biology of Staphylococcus aureus were selected from Medline database and summarized in the following review. After almost 40 years of successful treatment of S. aureus with vancomycin, several cases of clinical failures have been reported (since 1997). S. aureus strains have appeared with intermediate susceptibility (MIC 8-16 microg/ml), as well as strains with heterogeneous resistance (global MIC < or =4 microg/ml), but with subpopulations of intermediate susceptibility. In these cases, resistance is mediated by cell wall thickening with reduced cross linking. This traps the antibiotic before it reaches its major target, the murein monomers in the cell membrane. In 2002, a total vancomycin resistant strain (MIC > or =32 microg/ml) was reported with vanA genes from Enterococcus spp. These genes induce the change of D-Ala-D-Ala terminus for D-Ala-D-lactate in the cell wall precursors, leading to loss of affinity for glycopeptides. Vancomycin resistance in S. aureus has appeared; it is mediated by cell wall modifications that trap the antibiotic before it reaches its action site. In strains with total resistance, Enterococcus spp. genes have been acquired that lead to modification of the glycopeptide target.  相似文献   

9.
Enterococcus faecium clinical isolate BM4524, resistant to vancomycin and susceptible to teicoplanin, harboured a chromosomal vanB cluster, including the vanSB/vanRB two-component system regulatory genes. Enterococcus faecium strain BM4525, isolated two weeks later from the same patient, was resistant to high levels of both glycopeptides. The ddl gene of BM4525 had a 2 bp insertion leading to an impaired d-alanine:d-alanine ligase. Sequencing of the vanB operon in BM4525 also revealed an 18 bp deletion in the vanSB gene designated vanSBDelta. The resulting six amino acid deletion partially overlapped the G2 ATP-binding domain of the VanSBDelta histidine kinase leading to constitutive expression of the resistance genes. Sequence analysis indicated that the deletion occurred between two tandemly arranged heptanucleotide direct repeats, separated by 11 base-pairs. The VanSB, VanSBDelta and VanRB proteins were overproduced in Escherichia coli and purified. In vitro autophosphorylation of the VanSB and VanSBDelta histidine kinases and phosphotransfer to the VanRB response regulator did not differ significantly. However, VanSBDelta was deficient in VanRB phosphatase activity leading to accumulation of phosphorylated VanRB. Increased glycopeptide resistance in E. faecium BM4525 was therefore a result of the lack of production of d-alanyl-d-alanine ending pentapeptide and to constitutive synthesis of d-alanyl-d-lactate terminating peptidoglycan precursors, following loss of d-alanine:d-alanine ligase and of VanSB phosphatase activity respectively. We suggest that the heptanucleotide direct repeat in vanSB may favour the appearance of high level constitutively expressed vancomycin resistance through a 'slippage' type of genetic rearrangement in VanB-type strains.  相似文献   

10.
Glycopeptide dependence for growth in enterococci results from mutations in the ddl gene that inactivate the host D-Ala:D-Ala ligase. The strains require glycopeptides as inducers for synthesis of resistance proteins, which allows for the production of peptidoglycan precursors ending in D-Ala-D-Lac instead of D-Ala-D-Ala. The sequences of the ddl gene from nine glycopeptide-dependent Enterococcus faecium clinical isolates were determined. Each one had a mutation consisting either in a 5-bp insertion at position 41 leading to an early stop codon, an in-frame 6-bp deletion causing the loss of two residues (KDVA243-246 to KA), or single base-pair changes resulting in an amino acid substitution (E13 --> G, G99 --> R, V241 --> D, D295 --> G, P313 --> L). The potential consequences of the deletion and point mutations on the 3-D structure of the enzyme were evaluated by comparative molecular modeling of the E. faecium enzyme, using the X-ray structure of the homologous Escherichia coli D-Ala:D-Ala ligase DdlB as a template. All mutated residues were found either to interact directly with one of the substrates of the enzymatic reaction (E13 and D295) or to stabilize the position of critical residues in the active site. Maintenance of the 3-D structure in the vicinity of these mutations in the active site appears critical for D-Ala:D-Ala ligase activity.  相似文献   

11.
Patti GJ  Kim SJ  Schaefer J 《Biochemistry》2008,47(32):8378-8385
Vancomycin and other antibacterial glycopeptide analogues target the cell wall and affect the enzymatic processes involved with cell-wall biosynthesis. Understanding the structure and organization of the peptidoglycan is the first step in establishing the mode of action of these glycopeptides. We have used solid-state NMR to determine the relative concentrations of stem-links (64%), bridge-links (61%), and cross-links (49%) in the cell walls of vancomycin-susceptible Enterococcus faecium (ATTC 49624). Furthermore, we have determined that in vivo only 7% of the peptidoglycan stems terminate in d-Ala- d-Ala, the well-known vancomycin-binding site. Presumably, d-Ala- d-Ala is cleaved from uncross-linked stems in mature peptidoglycan by an active carboxypeptidase. We believe that most of the few pentapeptide stems ending in d-Ala- d-Ala occur in the template and nascent peptidoglycan strands that are crucial for cell-wall biosynthesis.  相似文献   

12.
The aim of this study was to evaluate the drug susceptibility of 100 Enterococcus spp. strains isolated from patients hospitalized in State Clinical Hospital No 1 in Warsaw. All strains were identified (API 20 STREP) and their susceptibility to antibiotics was tested (ATB STREP) in automatic ATB system. Additionally, PYRase activity, beta-lactamase production (in nitrocefin test), MICs for vancomycin and teicoplanin (E test), HLAR--high level aminoglycoside resistance and susceptibility to vancomycin, teicoplanin, piperacillin and piperacillin/tazobactam (disc diffusion method) were determined. E. faecalis ATCC 29212 was used as the control strain. Fifty E. faecalis, 45 E. faecium, 2 E. casseliflavus, 2 E. durans and 1 E. avium strain were cultured. All strains were PYRase-positive and beta-lactamase-negative. Ten isolates demonstrated intermediate susceptibility to vancomycin (6--E. faecalis and 4--E. faecium). One E. faecalis strain was intermediately susceptible to both glycopeptides. One E. casseliflavus strain showed low-level resistance to vancomycin, but this strain was susceptible to teicoplanin--phenotype Van C. HLAR strains were found among 31 E. faecalis and 40 E. faecium strains. 48 E. faecalis strains were susceptible to piperacillin and 49 to piperacillin/tazobactam. Whereas, 41 E. faecium were resistant to both these drugs. Thirty six per cent of isolates were resistant to penicillin and ampicillin, 73% to erythromycin, 87% to tetracycline, 89% to lincomycin and 56% to nitrofurantoin. Some discrepancies were noticed between the results of different methods applied for susceptibility testing--ATB system, E test and disc diffusion. These discrepancies concerned HLAR detection and susceptibility to glycopeptides determination. The best methods were: disc-diffusion for HLAR detection and E test for determination of resistance to vancomycin and teicoplanin. Increasing resistance to antimicrobial agents is observed in clinical Enterococcus spp. isolates cultured in our laboratory, especially in E. faecium strains. It is necessary to control the dissemination of multiresistant Enterococcus spp. strains in hospital wards.  相似文献   

13.
The peptide antibiotic ramoplanin factor A2 is a promising clinical candidate for treatment of Gram-positive bacterial infections that are resistant to antibiotics such as glycopeptides, macrolides, and penicillins. Since its discovery in 1984, no clinical or laboratory-generated resistance to this antibiotic has been reported. The mechanism of action of ramoplanin involves sequestration of peptidoglycan biosynthesis Lipid intermediates, thus physically occluding these substrates from proper utilization by the late-stage peptidoglycan biosynthesis enzymes MurG and the transglycosylases (TGases). Ramoplanin is structurally related to two cell wall active lipodepsipeptide antibiotics, janiemycin, and enduracidin, and is functionally related to members of the lantibiotic class of antimicrobial peptides (mersacidin, actagardine, nisin, and epidermin) and glycopeptide antibiotics (vancomycin and teicoplanin). Peptidomimetic chemotherapeutics derived from the ramoplanin sequence may find future use as antibiotics against vancomycin-resistant Enterococcus faecium (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and related pathogens. Here we review the chemistry and biology of the ramoplanins including its discovery, structure elucidation, biosynthesis, antimicrobial activity, mechanism of action, and total synthesis.  相似文献   

14.
Biocide resistance has hitherto been a poorly studied subject, possibly due to the belief that such resistance was rare and clinically insignificant. Various recent findings, however, have underlined the importance of biocide resistance as a clinically relevant phenomenon. Outbreaks of biocide-resistant organisms in hospitals have been described and the genetic mechanism for resistance to quaternary ammonium compounds (QACs) in Staphylococcus aureus has now been elucidated. Mycobacteria resistant to commonly used endoscope disinfectants are now commonly reported and have caused numerous adverse clinical events. Cross-resistance between triclosan and antituberculous drugs has been demonstrated in other strains of mycobacteria. This is related to a common mechanism of action. The work presented here describes studies into the biocide resistance of antibiotic-resistant cocci and attempts to create biocide-resistant strains in vitro. Strains of staphylococci (including methicillin-resistant Staph. aureus (MRSA)) and enterococci (including vancomycin-resistant enterococci (VRE)) had their susceptibility to biocides assayed using broth macro dilution methods and resistant strains were selected by serial subculture on biocide-containing media. Mutants were created with relative ease; for instance, triclosan minimal bactericidal concentrations (MBCs) increased from 0.002 to 3.12 mg l(-1). Some strains of MRSA which have intermediate resistance to glycopeptides were demonstrated to have decreased susceptibility to some biocides. Biocide resistance amongst enterococci was demonstrated although there was no clear correlation between biocide and antibiotic resistance. The exact mechanisms of resistance in these strains are still being studied but it is clear that biocide resistance is an important clinical phenomenon.  相似文献   

15.
The prevalence of glycopeptides, aminoglycosides and erythromycin resistance among Enterococcus faecalis and Enterococcus faecium was investigated. The susceptibility of 326 enterococcal hospital isolates to amikacin, kanamycin, netilmicin and tobramycin were determined using disk diffusion method. The minimum inhibitory concentration (MIC) of vancomycin, teicoplanin, gentamicin, streptomycin, and erythromycin were determined by microbroth dilution method. The genes encoding aminoglycoside modifying enzymes described as AMEs genes, erythromycin-resistant methylase (erm) and vancomycin-resistant were targeted by multiplex-PCR reaction. High level resistance (HLR) to gentamicin and streptomycin among enterococci isolates were 52% and 72% respectively. The most prevalent of AMEs genes were aac (6')-Ie aph (2") (63%) followed by aph (3')-IIIa (37%). The erythromycin resistance was 45% and 41% of isolates were positive for ermB gene. The ermA gene was found in 5% of isolates whereas the ermC gene was not detected in any isolates. The prevalence of vancomycin resistant enterococci (VRE) was 12% consisting of E. faecalis (6%) and E. faecium (22%) and all of them were VanA Phenotype. The results demonstrated that AMEs, erm and van genes are common in enterococci isolated in Tehran. Furthermore our results show an increase in the rate of vancomycin resistance among enterococci isolates in Iran.  相似文献   

16.
The emergence of acquired high-level resistance among Enterococcus species has renewed interest in mechanisms of resistance to glycopeptide antibiotics in gram-positive bacteria. In Enterococcus faecalis and Enterococcus faecium, resistance is encoded by the van gene cluster and is due to the production of a peptidoglycan precursor terminating in D-alanyl-D-lactate, to which vancomycin does not bind. Most Leuconostoc and many Lactobacillus species are intrinsically resistant to high levels of glycopeptide antibiotics, but the mechanism of resistance has not been elucidated. To determine whether the mechanisms of resistance are similar in intrinsically resistant bacteria, cytoplasmic peptidoglycan precursors were isolated from Leuconostoc mesenteroides and Lactobacillus casei and analyzed by mass spectrometry, revealing structures consistent with UDP-N-acetylmuramyl-L-Ala-D-Glu-L-Lys-(L-Ala)-D-Ala-D-lactate and UDP-N-acetylmuramyl-L-Ala-D-Glu-L-Lys-D-Ala-D-lactate, respectively.  相似文献   

17.
Three autolytic-defective mutants of Streptococcus faecium (S. faecalis ATCC 9790) were isolated. All three autolytic-defective mutants exhibited the following properties relative to the parental strain: (i) slower growth rates, especially in chemically defined medium; (ii) decreased rates of cellular autolysis and increased survival after exposure to antibiotics which block cell wall biosynthesis; (iii) decreased rates of cellular autolysis when treated with detergents, suspended in autolysis buffers, or grown in medium lacking essential cell wall precursors; (iv) a reduction in the total level of cellular autolytic enzyme (active plus latent forms of the enzyme); (v) an increased ratio of latent to active forms of autolysin; and (vi) increased levels of both cellular lipoteichoic acid and lipids.  相似文献   

18.
19.
Fifty-four Enterococcus faecalis and 20 Enterococcus faecium isolates from clinical and non-human sources in Rome, Italy, were characterized by antibiotic resistance and pulsed field gel electrophoresis (PFGE). Resistance to vancomycin, teicoplanin, ampicillin, and ciprofloxacin was more frequent in E. faecium than in E. faecalis, whereas high-level resistance to aminoglycoside was found primarily in E. faecalis. Multi-resistance was found primarily among clinical isolates, but was also observed among environmental isolates. Common genotypes shared among clinical and environmental isolates were observed, however, the majority of isolates occurred as unique, source-specific clones. Several PFGE types were associated with shared features in their antibiotic resistance patterns; evidences of clonal spread between and within wards were also noted. This is the first report indicating clonal relatedness between human and environmental enterococci isolated in Italy.  相似文献   

20.
A study on the antibiotic resistance of enterococcal isolates (n = 280) was carried out in a teaching hospital in Naples. Strains were isolated from different sources, identified by conventional tests and their antibiotic susceptibility was tested by E-test method. Thirty-two enterococcal isolates (11.5%), phenotypically identified as E. faecium (n = 26), E. gallinarum (n = 3), E. faecalis (n = 2) and E. hirae (n = 1), showed resistance to glycopeptides. The vanA gene was found in all 32 VRE. Molecular typing was performed by RAPD analysis which showed two majors patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号