首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Infectious bursal disease virus (IBDV) causes a highly immunosuppressive disease in chickens. Currently available, live IBDV vaccines can lead to generation of variant viruses. We have developed an alternative vaccine that will not create variant IBDV. By using the reverse genetics approach, we devised a recombinant Newcastle disease virus (NDV) vector from a commonly used vaccine strain LaSota to express the host-protective immunogen VP2 of a variant IBDV strain GLS-5. The gene encoding the VP2 protein of the IBDV was inserted into the most 3'-proximal locus of a full-length NDV cDNA for high-level expression. We successfully recovered the recombinant virus, rLaSota/VP2. The rLaSota/VP2 was genetically stable, at least up to 12 serial passages in chicken embryos, and was shown to express the VP2 protein. The VP2 protein was not incorporated into the virions of recombinant virus. Recombinant rLaSota/VP2 replicated to a titer similar to that of parental NDV strain LaSota in chicken embryos and cell cultures. To assess protective efficacy of the rLaSota/VP2, 2-day-old specific-pathogen-free chickens were vaccinated with the recombinant virus and challenged with a highly virulent NDV strain Texas GB or IBDV variant strain GLS-5 at 3 weeks postvaccination. Vaccination with rLaSota/VP2 generated antibody responses against both NDV and IBDV and provided 90% protection against NDV and IBDV. Booster immunization induced higher levels of antibody responses against both NDV and IBDV and conferred complete protection against both viruses. These results indicate that the recombinant NDV can be used as a vaccine vector for other avian pathogens.  相似文献   

2.
Zheng X  Hong L  Li Y  Guo J  Zhang G  Zhou J 《DNA and cell biology》2006,25(11):646-653
VP1, the RNA-dependent RNA polymerase of infectious bursal disease virus (IBDV), has been suggested to play an essential role in the replication and translation of viral RNAs. In this study, we first expressed the complete VP1 protein gene in Escherichia coli (E. coli), and then the produced polyclonal antibody and four monoclonal antibodies (mAbs) to recombinant VP1 protein (rVP1) were shown to bind the IBDV particles in chicken embryo fibroblast and Vero cells. The epitopic analysis showed that mAbs 1D4 and 3C7 recognized respectively two distinct antigenic epitopes on the rVP1 protein, but two pair of mAbs 1A2/2A12 and 1E1/1H3 potentially recognized another two topologically related epitopes. Immunocytochemical stainings showed that VP1 protein formed irregularly shaped particles in the cytoplasm of the IBDV-infected cells. These results demonstrated that the mAbs to rVP1 protein could bind the epitopes of IBDV particles, indicating that the rVP1 protein expressed in E. coli was suitable for producing the mAb to VP1 protein of IBDV, and that the cytoplasm could be the crucial site for viral genome replication of IBDV.  相似文献   

3.
利用肽扫描技术对4株IBDV VP3的单克隆抗体(HRB-3F、HRB-7B、HRB-7C和HRB-10E)的抗原表位进行了研究.通过Western blot和ELISA鉴定,将HRB-3F和HRB-7B的抗原表位定位于VP3 109~119 aa(位于IB-DV聚合蛋白的864~874 aa),HRB-7C和HRB-10E的抗原表位定位于VP3 177~190 aa(位于IBDV聚合蛋白的932~945 aa).进一步检测其反应原性及免疫原性,结果表明,这两个表位均能与抗IBDV阳性血清反应.将这两个表位短肽免疫BALB/c小鼠,其血清可以和IBDV反应,具有较好的免疫原性.与D6948、HK46和UK661等多株IBDV相应区域的同源性进行了比较,结果显示,这两个表位在多种毒株中同源性为100%.通过IBDV VP3抗原表位的研究,筛出两个新的保守线性表位并进行精确定位,对进一步分析IBDV结构与功能以及建立以表位为基础的抗原抗体诊断方法具有重要的意义.  相似文献   

4.
A foot-and-mouth disease virus (FMDV) cDNA cassette containing sequences encoding the capsid precursor P1, peptide 2A and a truncated 2B (abbreviated P1-2A) of type C FMDV, has been modified to generate the authentic amino terminus and the myristoylation signal. This construct has been used to produce a recombinant baculovirus (AcMM53) which, upon infection of Spodoptera frugiperda insect cells, expressed a recombinant P1-2A precursor with a high yield. This polyprotein reacted with neutralizing monoclonal antibodies (MAbs) that bind to continuous epitopes of the major antigenic site A (also termed site 1) of capsid protein VP1. Unexpectedly, it also reacted with neutralizing MAbs which define complex, discontinuous epitopes previously identified on FMDV particles. The reactivity of MAbs with P1-2A was quantitatively similar to their reactivity with intact virus and, in both cases, the reactivity with MAbs that recognized discontinuous epitopes was lost upon heat denaturation of the antigen. The finding that a capsid precursor may fold in such a way as to maintain discontinuous epitopes involved in virus neutralization present on the virion surface opens the possibility of using unprocessed capsid precursors as novel antiviral immunogens.  相似文献   

5.
Analysis of the properties for individual hepatitis C virus (HCV) proteins makes it possible to establish their molecular structure and conformation, to localize antigenic and immunogenic determinants, to identify protective epitopes, and to solve applied problems (e.g., design of diagnostic tests, vaccines, and drugs). Linear and conformational epitopes of HCV proteins were localized using the phage display technique, and the peptides exposed on the phages selected with monoclonal antibodies against HCV proteins were tested for immunogenicity. Of the 11 epitopes revealed, three were strongly linear; two depended on the secondary; and one on the tertiary structure of the corresponding protein (conformational epitopes). Amino acid sequences involved in the other epitopes were established. The results can be used to improve the diagnosis of hepatitis C, to study the effect of amino acid substitutions on the antigenic properties of HCV proteins, and to analyze the immune response in patients infected with genotypically different HCV. It was shown with the example of the NS5A epitope that phage particles with epitope-mimicking peptides (mimotopes) induce production of antibodies against the corresponding HCV proteins.  相似文献   

6.
The small envelope protein of hepatitis B virus (HBsAg-S) can self-assemble into highly organized virus like particles (VLPs) and induce an effective immune response. In this study, a restriction enzyme site was engineered into the cDNA of HBsAg-S at a position corresponding to the exposed site within the hydrophilic a determinant region (amino acid [aa] 127-128) to create a novel HBsAg vaccine vector allowing surface orientation of the inserted sequence. We inserted sequences of various lengths from hypervariable region 1 (HVR1) of the hepatitis C virus (HCV) E2 protein containing immunodominant epitopes and demonstrated secretion of the recombinant HBsAg VLPs from transfected mammalian cells. A number of different recombinant proteins were synthesized, and HBsAg VLPs containing inserts up to 36 aa were secreted with an efficiency similar to that of wild-type HBsAg. The HVR1 region exposed on the particles retained an antigenic structure similar to that recognized immunologically during natural infection. VLPs containing epitopes from either HCV-1a or -1b strains were produced that induced strain-specific antibody responses in immunized mice. Injection of a combination of these VLPs induced antibodies against both HVR1 epitopes that resulted in higher titers than were achieved by vaccination with the individual VLPs, suggesting a synergistic effect. This may lead to the development of recombinant particles which are able to induce a broad anti-HCV immune response against the HCV quasispecies or other quasispecies-like infectious agents.  相似文献   

7.
In an infectious poliovirus cDNA construct, the determinant encoding antigenic epitope N-Ag1 (in a loop located between two beta-strands in poly-peptide VP1) was altered by site-directed mutagenesis, to be partially similar with the determinants for presumptive epitopes in polypeptides VP1 or VP3 of hepatitis A virus (HAV). The modified constructs proved to be infectious. However, another construct, in which the same locus encoded a 'nonsense' and a relatively hydrophobic amino acid sequence, exhibited no infectivity. These data showed the feasibility of the insertion of foreign sequences in a specific antigenically active locus of the poliovirus icosahedron, and suggest some limitations with respect to the sequences to be 'transplanted'.  相似文献   

8.
Hepatitis C is related to the most important socially significant human infectious diseases; however, vaccine against this virus up to now has notbeen created. One of the possible components of vaccine is the nonstructural protein NS3 of hepatitis C virus (HCV), which is synthesized in the infected cells and displays protease, NTPase, and helicase enzymatic activities. The connection between the effectiveness ofT cellular response to NS3 epitopes and the spontaneous resolution of acute hepatitis C was shown. The purpose of this work was to compare the immune response of mice to the inoculation of nucleotide and amino acid sequences of HCV NS3 and their combination, to evaluate the adjuvant activity of the DNA encoding granulocyte macrophage colony-stimulating factor (GM-CSF) and the influence of regulatory T cells on the effectiveness of immune response. The maximum anti-HCV NS3 antibody level in the serum (to 1:640000) induced the recombinant protein rNS3 introduced with aluminum hydroxide. The most intensive cellular immune response was observed after the simultaneous administration of rNS3 and DNAs encoding full-size NS3 and GM-CSF. A high level of lymphocyte proliferation, accumulation of IFN-gamma-secreting cells and IFN-gamma, and IL-2 release in response to the stimulators--NS3 antigens of different composition were observed in this group of mice. It has been established that the suppression of regulatory T cells in vitro leads to the statistically significant increase in the secretion of IFN-gamma. Thus, simultaneous application of rNS3 along with the DNAs encoding full-size NS3 and GM-CSF is promising approach for development of hepatitis C vaccine. The expediency of inclusion in the vaccine composition of regulatory T cell inhibitors will be clear after special studies.  相似文献   

9.
Hepatitis C is related to the most important socially significant human infectious diseases. However, there is no vaccine for the hepatitis C virus. The nonstructural protein NS3 of the hepatitis C virus (HCV), which is synthesyzed in the infected cells and it displays protease, NTPase, and helicase enzymatic activities, is one of the possible components of the vaccine. The connection between the effectiveness of the T-cell response to NS3 epitopes and the spontaneous resolution of acute hepatitis C has been shown. The purpose of this work was to compare the immune response of mice to the inoculation of the nucleotide and amino acid sequences of HCV NS3 and their combination, as well as to evaluate the adjuvant activity of the DNA encoding of granulocyte macrophage colony-stimulating factor (GM-CSF) and the influence of regulatory T cells on the effectiveness of the immune response. The maximum anti-HCV NS3 antibody level in the serum (up to 1: 640000) induced the recombinant rNS3 protein introduced with aluminum hydroxide. The most intensive cellular immune response was observed after the simultaneous administration of rNS3 and DNAs encoding full-size NS3 and GM-CSF. A high level of lymphocyte proliferation, accumulation of IFN-γ-secreting cells, and IFN-γ/IL-2 release in response to the stimulators (NS3 antigens of different compositions) were observed in this group of mice. It has been established that the in vitro suppression of regulatory T cells leads to a statistically significant increase in the secretion of IFN-γ. Thus, the simultaneous application of rNS3, along with the DNAs encoding full-size NS3 and GM-CSF, is a promising approach to the development of hepatitis C vaccine. The expediency of adding regulatory T-cell inhibitors in the vaccine composition will be clear after special studies.  相似文献   

10.
We studied immune responses to hepatitis C virus (HCV) genes delivered as DNA encoding the entire HCV protein coding genome in two polycistronic plasmids encoding HCV capsid-E1-E2-NS2-NS3 and HCV NS3-NS4-NS5 in HLA-A2.1-transgenic mice. Immune responses to HCV DNA prime and recombinant canarypox virus boost were also studied with the above constructs. At 8 weeks after a canarypox virus boost, the DNA prime/canarypox virus boosting regimen induced potent cellular immune responses to HCV structural and nonstructural proteins on target cells expressing the HLA-A2.1 allele. High frequencies of gamma interferon-secreting cells, as detected by enzyme-linked immunospot assay, were obtained in response to several endogenously expressed HCV proteins. We also observed cytotoxic-T-lymphocyte reactivity in response to endogenously expressed HCV proteins in fresh spleen cells without in vitro expansion. Upon challenge with a recombinant vaccinia virus expressing HCV proteins at 2 months postimmunization, the HCV DNA prime/canarypox virus-immunized mice showed a complete reduction in vaccinia virus titers compared to HCV DNA prime/boost- and mock-immunized controls. Immune responses were still detectable 4 months after canarypox virus boost in immunized mice. Interestingly, at 10 months postimmunization (8 months after canarypox virus boost), the protection in HCV DNA prime/boost-immunized mice against recombinant HCV-vaccinia virus challenge was higher than that observed in HCV DNA prime/canarypox virus boost-immunized mice.  相似文献   

11.
The infectious bursal disease virus (IBDV), a member of the Birnaviridae family, containing a bisegmented double-stranded RNA genome, encodes four structural viral proteins, VP1, VP2, VP3, and VP4, as well as a non-structural protein, VP5. In the present paper, the segment A from two IBDV strains,field isolate ZJ2000 and attenuated strain HZ2, were inserted into one NaeⅠ site by site-directed silent mutagenesis and subcloned into the eukaryotic expression plasmid pCI under the control of the human cytomegalovirus (hCMV) immediate early enhancer and promoter to construct the recombinant plasmids pCI-AKZJ2000 and pCI-AKHZ2, respectively. Each of the two recombinants was combined with another recombinant pCI plasmid containing the marked segment B of strain HZ2 (pCI-mB), and injected intramuscularly into nonimmunized chickens. Two chimeric IBDV strains were recovered from the chickens. Two out of eight chickens in each of two groups showed the bursal histopathological change. The reassortant virus derived from pCI-AKZJ2000/pCI-mB can infect chicken embryos and shows relatively low virulence. We have developed a novel virus reverse genetic approach for the study of IBDV. The results also form the basis for investigating the role of VP1 in viral replication and pathogenecity.  相似文献   

12.
A gene encoding a structural protein (VP2) of a local strain (P3009) of infectious bursal disease virus (IBDV) was cloned and expressed using the baculovirus expression system to develop a subunit vaccine against IBDV infection in Taiwan. The expressed rVP2 proteins formed particles of approximately 20-30 nm in diameter. Those particles were partially purified employing sucrose density gradient ultracentrifugation, and the purified particles were recognized by a monoclonal antibody against the VP2 protein of IBDV P3009. To facilitate the purification of the particles, the VP2 protein was engineered to incorporate a metal ion binding site (His)(6 )at its C-terminus. The chimeric rVP2H proteins also formed particles, which could be affinity-purified in one step with immobilized metal ions (Ni(2+)). Particle formation was confirmed by direct observation under the electron microscope. The production level of rVP2H protein was determined to be 20 mg/L in a batch culture of Hi-5 cells by quantifying the concentration of the purified proteins. The chicken protection assay was performed to evaluate the immunogenicity of the rVP2H protein. When susceptible chickens were inoculated with the recombinant rVP2H proteins (40 microg/bird), virus-neutralizing antibodies were induced, thereby conferring a high level of protection against the challenge of a very virulent strain of IBDV. In conclusion, the most significant finding in this work is that both of the expressed rVP2 and rVP2H proteins can form a particulate structure capable of inducing a strong immunological response in a vaccinated chicken.  相似文献   

13.
In spite of extensive research, no effective vaccine against hepatitis C virus (HCV) has been developed so far. DNA immunization is a potent technique of vaccine design strongly promoting the cellular arm of immune response. The genes encoding nonstructural HCV proteins (NS2-NS5B) are promising candidates for vaccine development. NS5A is a protein involved in viral pathogenesis, in the induction of immune response, and probably in viral resistance to interferon treatment. The objective of this study was to construct a DNA vaccine encoding NS5A protein and evaluate its immunogenicity. A plasmid encoding a full-size NS5A protein was produced using the pcDNA3.1 (+) vector for eukaryotic expression system. The expression of the NS5A gene was confirmed by immunoperoxidase staining of the transfected eukaryotic cells with anti- NS5A monoclonal antibodies. Triple immunization of mice with the plasmid vaccine induced a pronounced cellular immune response against a broad spectrum of NS5A epitopes as assessed by T-cell proliferation and secretion of antiviral cytokines IFN-γ and IL-2. In T-cell stimulation in vitro experiments, NS5A-derived antigens were modeled by synthetic peptides, recombinant proteins of various genotypes, and phages carrying exposed NS5A peptides. A novel immunomodulator Immunomax showed high adjuvant activity in DNA immunization. The data obtained indicate that the suggested DNA construct has a strong potential in the development of the gene vaccines against hepatitis C.  相似文献   

14.
Infectious bursal disease virus (IBDV), a member of the family Birnaviridae, is responsible for a highly contagious and economically important disease causing immunosuppression in chickens. IBDV variants isolated in the United States exhibit antigenic drift affecting neutralizing epitopes in the capsid protein VP2. To understand antigenic determinants of the virus, we have used a reverse-genetics approach to introduce selected amino acid changes-individually or in combination-into the VP2 gene of the classical IBDV strain D78. We thus generated a total of 42 mutants with changes in 8 amino acids selected by sequence comparison and their locations on loops P(BC) and P(HI) at the tip of the VP2 spikes, as shown by the crystal structure of the virion. The antibody reactivities of the mutants generated were assessed using a panel of five monoclonal antibodies (MAbs). Our results show that a few amino acids of the projecting domain of VP2 control the reactivity pattern. Indeed, the binding of four out of the five MAbs analyzed here is affected by mutations in these loops. Furthermore, their importance is highlighted by the fact that some of the engineered mutants display identical reactivity patterns but have different growth phenotypes. Finally, this analysis shows that a new field strain isolated from a chicken flock in Belgium (Bel-IBDV) represents an IBDV variant with a hitherto unobserved antigenic profile, involving one change (P222S) in the P(BC) loop. Overall, our data provide important new insights for devising efficient vaccines that protect against circulating IBDV strains.  相似文献   

15.
传染性法氏囊病毒的抗原及分子特征   总被引:1,自引:0,他引:1  
用鸡胚成纤维细胞对来自野外的 5 个传染性法氏囊病毒株 (IBDV-JD1 、 JD2 、 NB 、 HZ1 、 HZ2) 进行分离,测定理化特性、致病性,同时进行血清亚型测定及 A 片段基因组的克隆分析 . 试验所用 5 个法氏囊组织悬液在鸡胚成纤维细胞盲传 2~14 代后适应细胞并产生细胞病变 . 细胞适应的 IBDV 毒株的理化和形态特征与经典传染性法氏囊病毒株一致 . 除 IBDV-HZ1 、 HZ2 属经典 IBDV 血清型外, IBDV-JD1 、 JD2 和 NB 毒株分属不同的血清亚型 . 人工感染实验结果显示,分离的 IBDV 毒株产生与野外病例相似的临床症状和病变,出现法氏囊滤泡髓质的淋巴细胞变性、坏死和消失 . 基因组序列分析显示, IBDV-NB 毒株 A 片段由 3 264 个核苷酸组成,编码由 145 个氨基酸残基组成的 VP5 和由 1 012 个氨基酸残基组成的多聚蛋白 . 与来自 GenBank 的 IBDV Ⅰ型毒株比较, NB 毒株 A 片段编码的多聚蛋白与 JD1 毒株的同源性最高,达 99.5% , VP2 与 JD1 、 CEF94 、 D78 的同源性为 99.8% , VP3 与 JD1 的同源性为 99.2% , VP4 与 JD1 的同源性为 100% , VP5 与 JD1 , HZ2 , P2 , CEF94 , CT , Cu-1 和 D78 毒株的同源性为 99.3%. NB 毒株 VP2 蛋白的第 253 、 280 、 284 位氨基酸残基与 IBDV 变异毒株和经典毒株一致,但不同于 IBDV 超强毒株 . 这些结果暗示 IBDV 的抗原表位是构象依赖性表位, IBDV 血清亚型的形成与 IBDV 弱毒疫苗病毒株密切相关 .  相似文献   

16.
GB virus B (GBV-B) is a recently discovered virus responsible for hepatitis in tamarins (Saguinus species). GBV-B belongs to the Flaviviridae family and is closely related to the human pathogen hepatitis C virus (HCV). Nonstructural protein 3 (NS3) of HCV has been shown to encompass a serine protease domain required for viral maturation. GBV-B and HCV share only about 30% of the amino acid sequence within the NS3 protease domain. The catalytic triad is conserved, and the residue Phe-154, presumed to be a crucial amino acid for determining the S1 specificity pocket of the HCV NS3 protease, is also conserved. We have expressed a synthetic gene encoding the GBV-B NS3 protease domain in Escherichia coli and have characterized the purified recombinant protein for its activity on HCV substrates. We have shown that the NS3 region of the GBV-B genome actually encodes a serine protease that, despite the low sequence homology, shares substrate specificity with the HCV NS3 protease.  相似文献   

17.
The expression of infectious bursal disease virus (IBDV) host-protective immunogen VP2 protein in rice seeds, its immunogenicity and protective capability in chickens were investigated. The VP2 cDNA of IBDV strain ZJ2000 was cloned downstream of the Gt1 promoter of the rice glutelin GluA-2 gene in the binary expression vector, pCambia1301-Gt1. Agrobacterium tumefaciens containing the recombinant vector was used to transform rice embryogenic calli, and 121 transgenic lines were obtained and grown to maturity in a greenhouse. The expression level of VP2 protein in transgenic rice seeds varied from 0.678% to 4.521% µg/mg of the total soluble seed protein. Specific pathogen-free chickens orally vaccinated with transgenic rice seeds expressing VP2 protein produced neutralizing antibodies against IBDV and were protected when challenged with a highly virulent IBDV strain, BC6/85. These results demonstrate that transgenic rice seeds expressing IBDV VP2 can be used as an effective, safe and inexpensive vaccine against IBDV.  相似文献   

18.
Hepatitis C virus (HCV) accounts for most cases of acute and chronic non-A and non-B hepatitis with serious consequences that may lead to hepatocellular carcinoma. The putative envelope glycoproteins (E1 and E2) of HCV probably play a role in the pathophysiology of the virus. In order to map the immunodominant domains of the E1 glycoprotein, two epitopes from amino acid residues 210 to 223 (P1) and 315 to 327 (P2) were predicted from the HCV sequence. Immunization of mice with the synthetic peptides conjugated to bovine serum albumin induced an antibody response, and the antisera immunoprecipitated the E1 glycoprotein (approximately 33 kDa) of HCV expressed by recombinant vaccinia virus. A panel of HCV-infected human sera was also tested with the synthetic peptides by enzyme-linked immunosorbent assay for epitope-specific responses. Of 38 infected serum samples, 35 (92.1%) demonstrated a spectrum of reactivity to the P2 peptide. On the other hand, only 17 of 38 (44.7%) serum samples were reactive to the P1 peptide. Strains of HCV exhibit a striking genomic diversity. The predicted P1 epitope showed localization in the sequence-variable region, and the P2 epitope localized in a highly conserved domain. Results from this study suggest that the E1 glycoprotein of HCV contains at least two potential antigenic epitopes. Synthetic peptides corresponding to these epitopes and antisera to these peptides may serve as the monospecific immunological reagents to further determine the role of E1 glycoprotein in HCV infection.  相似文献   

19.
Hepatitis C virus (HCV) is a major causative agent of parenterally transmitted non-A, non-B hepatitis. The genomic region encoding the virion-associated core protein is relatively conserved among HCV strains. To generate a DNA vaccine capable of expressing the HCV core protein, the genomic region encoding amino acid residues 1 to 191 of the HCV-1 strain was amplified and cloned into an eukaryotic expression vector. Intramuscular inoculation of recombinant plasmid DNA into BALB/c mice (H-2d) generated core-specific antibody responses, lymphoproliferative responses, and cytotoxic T-lymphocyte activity. Our results suggest that the HCV core polynucleotide warrants further investigation as a potential vaccine against HCV infection.  相似文献   

20.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, encodes in its bisegmented double-stranded RNA genome four structural virion proteins, VP1, VP2, VP3, and VP4, as well as a nonstructural protein, VP5. Recently, the establishment of an infectious cRNA system for IBDV has been described (E. Mundt and V. N. Vakharia, Proc. Natl. Acad. Sci. USA 93:11131-11136, 1996). Here, we report the isolation of a VP5- IBDV mutant constructed by site-directed mutagenesis of the methionine start codon of VP5, followed by cRNA transfection. The resulting virus mutant was replication competent in cell culture, which indicates that VP5 is not required for productive replication of IBDV. Absence of VP5 expression was verified by lack of reactivity with newly established anti-VP5 monoclonal antibodies and polyclonal sera. VP5- IBDV exhibited a delay in replication in chicken embryo cells compared to the VP5+ parental virus. However, final yields were similar. Our results thus show that VP5 is nonessential for IBDV replication, which makes it a prime candidate for the construction of deleted, marked vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号