首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The HIV-1 maturation inhibitor, 3-O-(3′,3′-dimethylsuccinyl) betulinic acid (bevirimat, PA-457) is a promising drug candidate with 10 nM in vitro antiviral activity against multiple wild-type (WT) and drug-resistant HIV-1 isolates. Bevirimat has a novel mechanism of action, specifically inhibiting cleavage of spacer peptide 1 (SP1) from the C-terminus of capsid which results in defective core condensation.

Methods and Findings

Oral administration of bevirimat to HIV-1-infected SCID-hu Thy/Liv mice reduced viral RNA by >2 log10 and protected immature and mature T cells from virus-mediated depletion. This activity was observed at plasma concentrations that are achievable in humans after oral dosing, and bevirimat was active up to 3 days after inoculation with both WT HIV-1 and an AZT-resistant HIV-1 clinical isolate. Consistent with its mechanism of action, bevirimat caused a dose-dependent inhibition of capsid-SP1 cleavage in HIV-1-infected human thymocytes obtained from these mice. HIV-1 NL4-3 with an alanine-to-valine substitution at the N-terminus of SP1 (SP1/A1V), which is resistant to bevirimat in vitro, was also resistant to bevirimat treatment in the mice, and SP1/AIV had replication and thymocyte kinetics similar to that of WT NL4-3 with no evidence of fitness impairment in in vivo competition assays. Interestingly, protease inhibitor-resistant HIV-1 with impaired capsid-SP1 cleavage was hypersensitive to bevirimat in vitro with a 50% inhibitory concentration 140 times lower than for WT HIV-1.

Conclusions

These results support further clinical development of this first-in-class maturation inhibitor and confirm the usefulness of the SCID-hu Thy/Liv model for evaluation of in vivo antiretroviral efficacy, drug resistance, and viral fitness.  相似文献   

2.
The small molecule 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (DSB) potently inhibits human immunodeficiency virus, type 1 (HIV-1) replication by interfering with proteolytic cleavage of the viral Gag protein at a specific site. Here we have demonstrated that the antiviral mechanism involves the association of DSB with Gag at a 1:1 stoichiometry within immature HIV-1 particles. The binding was specific, as mutations in Gag that confer resistance to DSB inhibited the association, which could be competed by DSB but not by the inactive compound betulinic acid. The addition of DSB to purified immature viral cores inhibited the cleavage of Gag at the CA-SP1 junction in vitro, thus reproducing the effect of the drug when present during maturation of HIV-1 particles. Based on these findings, we propose a model in which a trimer of DSB associates with the CA-SP1 junction of adjacent subunits within the Gag polymer. The model may explain the ability of highly similar compounds to specifically target the seemingly unrelated steps of HIV-1 maturation and virus entry.  相似文献   

3.
The capsid protein (CA) of the mature human immunodeficiency virus (HIV) contains an N-terminal beta-hairpin that is essential for formation of the capsid core particle. CA is generated by proteolytic cleavage of the Gag precursor polyprotein during viral maturation. We have determined the NMR structure of a 283-residue N-terminal fragment of immature HIV-1 Gag (Gag(283)), which includes the intact matrix (MA) and N-terminal capsid (CA(N)) domains. The beta-hairpin is unfolded in Gag(283), consistent with the proposal that hairpin formation occurs subsequent to proteolytic cleavage of Gag, triggering capsid assembly. Comparison of the immature and mature CA(N) structures reveals that beta-hairpin formation induces a approximately 2 A displacement of helix 6 and a concomitant displacement of the cyclophylin-A (CypA)-binding loop, suggesting a possible allosteric mechanism for CypA-mediated destabilization of the capsid particle during infectivity.  相似文献   

4.
The major structural elements of retroviruses are contained in a single polyprotein, Gag, which in human immunodeficiency virus type 1 (HIV-1) comprises the MA, CA, spacer peptide 1 (SP1), NC, SP2, and p6 polypeptides. In the immature HIV-1 virion, the domains of Gag are arranged radially with the N-terminal MA domain at the membrane and C-terminal NC-SP2-p6 region nearest to the center. Here, we report the three-dimensional structures of individual immature HIV-1 virions, as obtained by electron cryotomography. The concentric shells of the Gag polyprotein are clearly visible, and radial projections of the different Gag layers reveal patches of hexagonal order within the CA and SP1 shells. Averaging well-ordered unit cells leads to a model in which each CA hexamer is stabilized by a bundle of six SP1 helices. This model suggests why the SP1 spacer is essential for assembly of the Gag lattice and how cleavage between SP1 and CA acts as a structural switch controlling maturation.  相似文献   

5.
6.
Human endogenous retroviruses (HERVs), which are remnants of ancestral retroviruses integrated into the human genome, are defective in viral replication. Because activation of HERV-K and coexpression of this virus with HIV-1 have been observed during HIV-1 infection, it is conceivable that HERV-K could affect HIV-1 replication, either by competition or by cooperation, in cells expressing both viruses. In this study, we found that the release efficiency of HIV-1 Gag was 3-fold reduced upon overexpression of HERV-K(CON) Gag. In addition, we observed that in cells expressing Gag proteins of both viruses, HERV-K(CON) Gag colocalized with HIV-1 Gag at the plasma membrane. Furthermore, HERV-K(CON) Gag was found to coassemble with HIV-1 Gag, as demonstrated by (i) processing of HERV-K(CON) Gag by HIV-1 protease in virions, (ii) coimmunoprecipitation of virion-associated HERV-K(CON) Gag with HIV-1 Gag, and (iii) rescue of a late-domain-defective HERV-K(CON) Gag by wild-type (WT) HIV-1 Gag. Myristylation-deficient HERV-K(CON) Gag localized to nuclei, suggesting cryptic nuclear trafficking of HERV-K Gag. Notably, unlike WT HERV-K(CON) Gag, HIV-1 Gag failed to rescue myristylation-deficient HERV-K(CON) Gag to the plasma membrane. Efficient colocalization and coassembly of HIV-1 Gag and HERV-K Gag also required nucleocapsid (NC). These results provide evidence that HIV-1 Gag heteromultimerizes with HERV-K Gag at the plasma membrane, presumably through NC-RNA interaction. Intriguingly, HERV-K Gag overexpression reduced not only HIV-1 release efficiency but also HIV-1 infectivity in a myristylation- and NC-dependent manner. Altogether, these results indicate that Gag proteins of endogenous retroviruses can coassemble with HIV-1 Gag and modulate the late phase of HIV-1 replication.  相似文献   

7.
A single multi-domain viral protein, termed Gag, is sufficient for assembly of retrovirus-like particles in mammalian cells. We have purified the human immunodeficiency virus type 1 (HIV-1) Gag protein (lacking myristate at its N terminus and the p6 domain at its C terminus) from bacteria. This protein is capable of assembly into virus-like particles in a defined in vitro system. We have reported that it is in monomer-dimer equilibrium in solution, and have described a mutant Gag protein that remains monomeric at high concentrations in solution. We report that the mutant protein retains several properties of wild-type Gag. This mutant enabled us to analyze solutions of monomeric protein. Hydrodynamic studies on the mutant protein showed that it is highly asymmetric, with a frictional ratio of 1.66. Small-angle neutron scattering (SANS) experiments confirmed its asymmetry and yielded an R(g) value of 34 A. Atomic-level structures of individual domains within Gag have previously been determined, but these domains are connected in Gag by flexible linkers. We constructed a series of models of the mutant Gag protein based on these domain structures, and tested each model computationally for its agreement with the experimental hydrodynamic and SANS data. The only models consistent with the data were those in which Gag was folded over, with its N-terminal matrix domain near its C-terminal nucleocapsid domain in three-dimensional space. Since Gag is a rod-shaped molecule in the assembled immature virion, these findings imply that Gag undergoes a major conformational change upon virus assembly.  相似文献   

8.
HIV-1 Gag is the only protein required for retroviral particle assembly. There is evidence suggesting that phosphatidylinositol phosphate and nucleic acid are essential for viruslike particle assembly. To elucidate structural foundations of interactions of HIV-1 Gag with the assembly cofactors PI(4,5)P2 and RNA, we employed mass spectrometric protein footprinting. In particular, the NHS-biotin modification approach was used to identify the lysine residues that are exposed to the solvent in free Gag and are protected from biotinylation by direct protein-ligand or protein-protein contacts in Gag complexes with PI(4,5)P2 and/or RNA. Of 21 surface lysines readily modified in free Gag, only K30 and K32, located in the matrix domain, were strongly protected in the Gag-PI(4,5)P2 complex. Nucleic acid also protected these lysines, but only at significantly higher concentrations. In contrast, nucleic acids and not PI(4,5)P2 exhibited strong protection of two nucleocapsid domain residues: K391 and K424. In addition, K314, located in the capsid domain, was specifically protected only in the presence of both PI(4,5)P2 and nucleic acid. We suggest that concerted binding of PI(4,5)P2 and nucleic acid to the matrix and nucleocapsid domains, respectively, promotes protein-protein interactions involving capsid domains. These protein-protein interactions must be involved in virus particle assembly.  相似文献   

9.
Bouamr F  Scarlata S  Carter C 《Biochemistry》2003,42(21):6408-6417
Assembly of the human immunodeficiency virus type 1 (HIV-1) first occurs on the plasma membrane of host cells where binding is driven by strong electrostatic interactions between the N-terminal matrix (MA) domain of the structural precursor polyprotein, Gag, and the membrane. MA is also myristylated, but the exact role this modification plays is not clear. In this study, we compared the protein oligomerization and membrane binding properties of Myr(+) and Myr(-) Gag(MA) expressed in COS-1 cells. Sedimentation studies in solution showed that both the myristylated Gag precursor and the mature MA product were detected in larger complexes than their unmyristylated counterparts, and the myristylated MA protein bound liposomes with approximately 3-fold greater affinity than unmyristylated MA. Aromatic residues near the N-terminal region of the MA protein were more accessible to chymotrypsin in the unmyristylated form and, consistent with this, an epitope in the N-terminal region was more exposed. Moreover, the cyclophilin binding site in the CA domain downstream of MA was more accessible in the unmyristylated Gag protein, while the Tsg101 binding site in the C-terminal region was equally available in the unmyristylated and myristylated Gag proteins. Taken together, our results suggest that myristylation promotes assembly by inducing conformational changes and facilitating MA multimerization. This observation offers a novel role for myristylation.  相似文献   

10.
The stoichiometry of Gag protein in HIV-1   总被引:1,自引:0,他引:1  
The major structural components of HIV-1 are encoded as a single polyprotein, Gag, which is sufficient for virus particle assembly. Initially, Gag forms an approximately spherical shell underlying the membrane of the immature particle. After proteolytic maturation of Gag, the capsid (CA) domain of Gag reforms into a conical shell enclosing the RNA genome. This mature shell contains 1,000-1,500 CA proteins assembled into a hexameric lattice with a spacing of 10 nm. By contrast, little is known about the structure of the immature virus. We used cryo-EM and scanning transmission EM to determine that an average (145 nm diameter) complete immature HIV particle contains approximately 5,000 structural (Gag) proteins, more than twice the number from previous estimates. In the immature virus, Gag forms a hexameric lattice with a spacing of 8.0 nm. Thus, less than half of the CA proteins form the mature core.  相似文献   

11.
The HIV-1 protein Gag assembles at the plasma membrane and drives virion budding, assisted by the cellular endosomal complex required for transport (ESCRT) proteins. Two ESCRT proteins, TSG101 and ALIX, bind to the Gag C-terminal p6 peptide. TSG101 binding is important for efficient HIV-1 release, but how ESCRTs contribute to the budding process and how their activity is coordinated with Gag assembly is poorly understood. Yeast, allowing genetic manipulation that is not easily available in human cells, has been used to characterize the cellular ESCRT function. Previous work reported Gag budding from yeast spheroplasts, but Gag release was ESCRT-independent. We developed a yeast model for ESCRT-dependent Gag release. We combined yeast genetics and Gag mutational analysis with Gag-ESCRT binding studies and the characterization of Gag-plasma membrane binding and Gag release. With our system, we identified a previously unknown interaction between ESCRT proteins and the Gag N-terminal protein region. Mutations in the Gag-plasma membrane–binding matrix domain that reduced Gag-ESCRT binding increased Gag-plasma membrane binding and Gag release. ESCRT knockout mutants showed that the release enhancement was an ESCRT-dependent effect. Similarly, matrix mutation enhanced Gag release from human HEK293 cells. Release enhancement partly depended on ALIX binding to p6, although binding site mutation did not impair WT Gag release. Accordingly, the relative affinity for matrix compared with p6 in GST-pulldown experiments was higher for ALIX than for TSG101. We suggest that a transient matrix-ESCRT interaction is replaced when Gag binds to the plasma membrane. This step may activate ESCRT proteins and thereby coordinate ESCRT function with virion assembly.  相似文献   

12.
13.
Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein driving assembly and release of virions from infected cells. Gag alone is capable of self-assembly in vitro, but host factors have been shown to play a role in efficient viral replication and particle morphogenesis within the living cell. In a series of affinity purification experiments, we identified the cellular protein Lyric to be an HIV-1 Gag-interacting protein. Lyric was previously described to be an HIV-inducible gene and is involved in various signaling pathways. Gag interacts with endogenous Lyric via its matrix (MA) and nucleocapsid (NC) domains. This interaction requires Gag multimerization and Lyric amino acids 101 to 289. Endogenous Lyric is incorporated into HIV-1 virions and is cleaved by the viral protease. Gag-Lyric interaction was also observed for murine leukemia virus and equine infectious anemia virus, suggesting that it represents a conserved feature among retroviruses. Expression of the Gag binding domain of Lyric increased Gag expression levels and viral infectivity, whereas expression of a Lyric mutant lacking the Gag binding site resulted in lower Gag expression and decreased viral infectivity. The results of the current study identify Lyric to be a cellular interaction partner of HIV-1 Gag and hint at a potential role in regulating infectivity. Further experiments are needed to elucidate the precise role of this interaction.  相似文献   

14.

Background

HIV-1 Gag polyprotein orchestrates the assembly of viral particles. Its C-terminus consists of the nucleocapsid (NC) domain that interacts with RNA, and the p6 domain containing the PTAP motif that binds the cellular ESCRT factor TSG101 and ALIX. Deletion of the NC domain of Gag (GagNC) results in defective Gag assembly, a decrease in virus production and, thus probably affects recruitment of the ESCRT machinery. To investigate the role of GagNC in this recruitment, we analysed its impact on TSG101 and ALIX localisations and interactions in cells expressing Gag.

Methods

Cells expressing mCherry-Gag or derivatives, alone or together with eGFP-TSG101 or eGFP-ALIX, were analysed by confocal microscopy and FLIM-FRET. Chemical shift mapping between TSG101-UEV motif and Gag C-terminus was performed by NMR.

Results

We show that deletion of NC or of its two zinc fingers decreases the amount of Gag-TSG101 interacting complexes in cells. These findings are supported by NMR data showing chemical shift perturbations in the NC domain in- and outside - of the zinc finger elements upon TSG101 binding. The NMR data further identify a large stretch of amino acids within the p6 domain directly interacting with TSG101.

Conclusion

The NC zinc fingers and p6 domain of Gag participate in the formation of the Gag-TSG101 complex and in its cellular localisation.

General significance

This study illustrates that the NC and p6 domains cooperate in the interaction with TSG101 during HIV-1 budding. In addition, details on the Gag-TSG101 complex were obtained by combining two high resolution biophysical techniques.  相似文献   

15.
Vaccination for human immunodeficiency virus type 1 (HIV-1) remains an elusive goal. Whether an unsuccessful vaccine might not only fail to provoke detectable immune responses but also could actually interfere with subsequent natural immunity upon HIV-1 infection is unknown. We performed detailed assessment of an HIV-1 gag DNA vaccine recipient (subject 00015) who was previously uninfected but sustained HIV-1 infection before completing a vaccination trial and another contemporaneously acutely infected individual (subject 00016) with the same strain of HIV-1. Subject 00015 received the vaccine at weeks 0, 4, and 8 and was found to have been acutely HIV-1 infected around the time of the third vaccination. Subject 00016 was a previously HIV-1-seronegative sexual contact who had symptoms of acute HIV-1 infection approximately 2 weeks earlier than subject 00015 and demonstrated subsequent seroconversion. Both individuals reached an unusually low level of chronic viremia (<1,000 copies/ml) without treatment. Subject 00015 had no detectable HIV-1-specific cytotoxic T-lymphocyte (CTL) responses until a borderline response was noted at the time of the third vaccination. The magnitude and breadth of Gag-specific CTL responses in subject 00015 were similar to those of subject 00016 during early chronic infection. Viral sequences from gag, pol, and nef confirmed the common source of HIV-1 between these individuals. The diversity and divergence of sequences in subjects 00015 and 00016 were similar, indicating similar immune pressure on these proteins (including Gag). As a whole, the data suggested that while the gag DNA vaccine did not prime detectable early CTL responses in subject 00015, vaccination did not appreciably impair his ability to contain viremia at levels similar to those in subject 00016.  相似文献   

16.
During HIV-1 assembly, Gag polypeptides multimerize to form an immature capsid and also package HIV-1 genomic RNA. Assembling Gag forms immature capsids by progressing through a stepwise pathway of assembly intermediates containing the cellular ATPase ABCE1, which facilitates capsid formation. The NC domain of Gag is required for ABCE1 binding, acting either directly or indirectly. NC is also critical for Gag multimerization and RNA binding. Previous studies of GagZip chimeric proteins in which NC was replaced with a heterologous leucine zipper that promotes protein dimerization but not RNA binding established that the RNA binding properties of NC are dispensable for capsid formation per se. Here we utilized GagZip proteins to address the question of whether the RNA binding properties of NC are required for ABCE1 binding and for the formation of ABCE1-containing capsid assembly intermediates. We found that assembly-competent HIV-1 GagZip proteins formed ABCE1-containing intermediates, while assembly-incompetent HIV-1 GagZip proteins harboring mutations in residues critical for leucine zipper dimerization did not. Thus, these data suggest that ABCE1 does not bind to NC directly or through an RNA bridge, and they support a model in which dimerization of Gag, mediated by NC or a zipper, results in exposure of an ABCE1-binding domain located elsewhere in Gag, outside NC. Additionally, we demonstrated that immature capsids formed by GagZip proteins are insensitive to RNase A, as expected. However, unexpectedly, immature HIV-1 capsids were almost as insensitive to RNase A as GagZip capsids, suggesting that RNA is not a structural element holding together immature wild-type HIV-1 capsids.  相似文献   

17.
After entry of the human immunodeficiency virus type 1 (HIV-1) into T cells and the subsequent synthesis of viral products, viral proteins and RNA must somehow find each other in the host cells and assemble on the plasma membrane to form the budding viral particle. In this general review of HIV-1 assembly, we present a brief overview of the HIV life cycle and then discuss assembly of the HIV Gag polyprotein on RNA and membrane substrates from a biochemical perspective. The role of the domains of Gag in targeting to the plasma membrane and the role of the cellular host protein cyclophilin are also reviewed.  相似文献   

18.
Role of HIV-1 Gag domains in viral assembly   总被引:13,自引:0,他引:13  
After entry of the human immunodeficiency virus type 1 (HIV-1) into T cells and the subsequent synthesis of viral products, viral proteins and RNA must somehow find each other in the host cells and assemble on the plasma membrane to form the budding viral particle. In this general review of HIV-1 assembly, we present a brief overview of the HIV life cycle and then discuss assembly of the HIV Gag polyprotein on RNA and membrane substrates from a biochemical perspective. The role of the domains of Gag in targeting to the plasma membrane and the role of the cellular host protein cyclophilin are also reviewed.  相似文献   

19.
HIV-1 utilizes cellular factors for efficient replication. The viral RNA is different from cellular mRNAs in many aspects, and is prone to attacks by cellular RNA quality control systems. To establish effective infection, the virus has evolved multiple mechanisms to protect its RNA. Here, we show that expression of the Y-box binding protein 1 (YB-1) enhanced the production of HIV-1. Downregulation of endogenous YB-1 in producer cells decreased viral production. YB-1 increased viral protein expression by stabilizing HIV-1 RNAs. The stem loop 2 in the HIV-1 RNA packaging signal was mapped to be the YB-1-responsive element. Taken together, these results indicate that YB-1 stabilizes HIV-1 genomic RNA and thereby enhances HIV-1 gene expression and viral production.  相似文献   

20.
《Cell reports》2020,30(12):4065-4081.e4
  1. Download : Download high-res image (245KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号