首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naloxone (an opioid receptor antagonist) was used to examine the role of opioid mechanisms in bladder reflexes and in somatic afferent inhibition of these reflexes by tibial nerve stimulation (TNS). Experiments were conducted in α-chloralose-anesthetized cats when the bladder was infused with saline or 0.25% acetic acid (AA). The bladder volume was measured at the first large-amplitude (>30 cmH(2)O) contraction during a cystometrogram and termed "estimated bladder capacity" (EBC). AA irritated the bladder, induced bladder overactivity, and significantly (P < 0.0001) reduced EBC to 14.3 ± 1.9% of the saline control. TNS (5 Hz, 0.2 ms) at 4 and 8 times the threshold (T) intensity for inducing an observable toe movement suppressed AA-induced bladder overactivity and significantly increased EBC to 41.5 ± 9.9% (4T, P < 0.05) and 46.1 ± 7.9% (8T, P < 0.01) of the saline control. Naloxone (1 mg/kg iv) completely eliminated TNS inhibition of bladder overactivity. Naloxone (0.001-1 mg/kg iv) did not change EBC during AA irritation. However, during saline infusion naloxone (1 mg/kg iv) significantly (P < 0.01) reduced EBC to 66.5 ± 8.1% of the control EBC. During saline infusion, TNS induced an acute increase in EBC and an increase that persisted following the stimulation. Naloxone (1 mg/kg) did not alter either type of inhibition. However, naloxone administered during the poststimulation inhibition decreased EBC. These results indicate that opioid receptors have different roles in modulation of nociceptive and nonnociceptive bladder reflexes and in somatic afferent inhibition of these reflexes, raising the possibility that opioid receptors may be a target for pharmacological treatment of lower urinary tract disorders.  相似文献   

2.
3.
Somatosensory evoked potentials by tibial nerve stimulation were obtained in ten New Zealand rabbits. The subcortical or cortical source of the three negative and three positive peaks present in the first 55 ms is discussed viewing the results obtained by different surface electrode locations and by stereotaxic recordings. The authors report interanimal, interhemispheric and test-retest variability of latencies and amplitudes of subcortical and cortical components.  相似文献   

4.
Nitric oxide levels are diminished in hypertensive patients, suggesting nitric oxide might have an important role to play in the development of hypertension. Chronic blockade of nitric oxide leads to hypertension that is sustained throughout the period of the blockade in baroreceptor-intact animals. It has been suggested that the sympathetic nervous system is involved in the chronic increase in blood pressure; however, the evidence is inconclusive. We measured renal sympathetic nerve activity and blood pressure via telemetry in rabbits over 7 days of nitric oxide blockade. Nitric oxide blockade via N(omega)-nitro-L-arginine methyl ester (L-NAME) in the drinking water (50 mg x kg(-1) x day(-1)) for 7 days caused a significant increase in arterial pressure (7 +/- 1 mmHg above control levels; P < 0.05). While the increase in blood pressure was associated with a decrease in heart rate (from 233 +/- 6 beats/min before the L-NAME to 202 +/- 6 beats/min on day 7), there was no change in renal sympathetic nerve activity (94 +/- 4 %baseline levels on day 2 and 96 +/- 5 %baseline levels on day 7 of L-NAME; baseline nerve activity levels were normalized to the maximum 2 s of nerve activity evoked by nasopharyngeal stimulation). The lack of change in renal sympathetic nerve activity during the L-NAME-induced hypertension indicates that the renal nerves do not mediate the increase in blood pressure in conscious rabbits.  相似文献   

5.
As the relationship between emotional behavior and electrocardiographic (ECG) change induced by hypothalamic stimulation is poorly understood, eighty-four points in various areas within the hypothalamus in conscious cats were stimulated electrically through chronically implanted electrodes, the objective being to clarify the behavior accompanying ECG changes, in particular poststimulus arrhythmias. Forty-one of 84 points elicited behavioral patterns such as defense reaction, pseudo-rage and restlessness (classified as group A), and in twenty-one (51%) of these 41 points arrhythmias occurred after cessation of stimulation. Forty-three of 84 points elicited behavioral patterns including predatory, exploratory and other behavioral responses (classified as group B), and in three (7%) of 43 points, poststimulus arrhythmias followed. Under light anesthesia, stimulations of twofold current intensity were applied at these points, and the incidences of the arrhythmias did not change in either group. The arrhythmia-inducing area in the cases of group A was found to lie dorsal and caudal to the optic chiasma and to extend caudally in the fornix. Three points in the cases of group B were located in the outer area of the aforementioned area. These studies showed that arrhythmias and group A behavior were observed mainly from stimulation of the anterior hypothalamus, whereas stimulation of other areas of the hypothalamus, including the lateral and the posterolateral hypothalamus, produced group B behavior and no arrhythmias.  相似文献   

6.
Cortical somatosensory evoked potentials to posterior tibial nerve stimulation were obtained in 29 normal controls varying in age and body height. In obtaining these potentials we varied recording derivations and frequency settings. Our recordings demonstrated the following points:
  • 1.(1) N20 (dorsal cord potential) and the early cortical components (P2, N2) were the only potentials that were consistently recorded. All other subcortical components (N18, N24, P27, N30) were of relatively low amplitude and not infrequently absent even in normals.
  • 2.(2) All absolute latencies other than N2 were correlated with body height. However, interpeak latency differences were independent of body height.
  • 3.(3) Below the age of 20, subcortical but not cortical peak latencies correlated with age, but this appeared to be due to changes in body height in this age group.
  • 4.(4) Absolute amplitudes and amplitude ratios (left/right and uni/bilateral) showed marked interindividual variability and have very limited value in defining abnormality.
  • 5.(5) The use of restricted filter windows facilitated the selective recording of postsynaptic potentials (30–250 Hz) and action potentials (150–1500 Hz).
  相似文献   

7.
Our recent study in cats revealed that inhibition of bladder overactivity by tibial nerve stimulation (TNS) depends on the activation of opioid receptors. TNS is a minimally invasive treatment for overactive bladder (OAB), but its efficacy is low. Tramadol (an opioid receptor agonist) is effective in treating OAB but elicits significant adverse effects. This study was to determine if a low dose of tramadol (expected to produce fewer adverse effects) can enhance the TNS inhibition of bladder overactivity. Bladder overactivity was induced in α-chloralose-anesthetized cats by an intravesical infusion of 0.25% acetic acid (AA) during repeated cystometrograms (CMGs). TNS (5 Hz) at two to four times the threshold intensity for inducing toe movement was applied during CMGs before and after tramadol (0.3-7 mg/kg iv) to examine the interaction between the two treatments. AA irritation significantly reduced bladder capacity to 24.8 ± 3.3% of the capacity measured during saline infusion. TNS alone reversibly inhibited bladder overactivity and significantly increased bladder capacity to 50-60% of the saline control capacity. Tramadol administered alone in low doses (0.3-1 mg/kg) did not significantly change bladder capacity, whereas larger doses (3-7 mg/kg) increased bladder capacity (50-60%). TNS in combination with tramadol (3-7 mg/kg) completely reversed the effect of AA. Tramadol also unmasked a prolonged (>2 h) TNS inhibition of bladder overactivity that persisted after termination of the stimulation. The results suggest a novel treatment strategy for OAB by combining tibial neuromodulation with a low dose of tramadol, which is minimally invasive with a potentially high efficacy and fewer adverse effects.  相似文献   

8.
9.
Whether the two earliest cortical somatosensory evoked potentials (SEPs) to tibial nerve stimulation (N37 and P40) are generated by the same dipolar source or, instead, originate from different neuronal populations is still a debated problem. We recorded the early scalp SEPs to tibial nerve stimulation in 10 healthy subjects at rest and during voluntary movement of the stimulated foot. We found that the P40, which reached its highest amplitude on the vertex at rest, changed its topography during movement, since its amplitude was reduced much more in the central than in the parietal traces. These findings suggest that two different components contribute to the centro-parietal positivity at rest: (1) the P37 response, which is parietally distributed and is not modified by movement, and (2) the `real' P40 SEP, which is focused on the vertex and is reduced in amplitude during voluntary movement. Since, also, the N37 response did not vary its amplitude under interference condition, it is possible that the N37 and P37 potentials are generated by the same dipolar source. Other later components, namely P50 and N50, were significantly reduced in amplitude during foot movement. Lastly, the subcortical P30 far-field remained unchanged and this suggests that the phenomenon of amplitude reduction during movement (i.e. gating) occurs above the cervico-medullary junction.  相似文献   

10.
Summary The populations of cells which produce immunoreactive growth hormone (GH) and thyroid stimulating hormone (TSH) in the rat pituitary gland do not occur in fixed percentages but vary greatly under different physiological and experimental conditions. These variations can be directly correlated to the levels of stimulation and/or inhibition of the specific secretory activity. In both types of cell, sustained stimulation with trophic hormones or blockage of the feedback mechanisms induces remarkable growth in the specific cell population. Conversely, the interruption or inhibition of the stimulus thwarted the hormonal secretion and caused a massive degeneration of redundant cells. The stimulation of both GH and TSH cells is accompanied by an enhanced secretory activity as judged by their higher concentrations in serum and hypertrophy of the cytoplasmic organelles involved in synthesis and intracellular processing of the hormones. By contrast, interruption of the stimulus is followed by a variable degree of disruption of the cytoplasmic organization, including a sizable degeneration of cells. In stimulated rats, the concentrations of both GH and TSH decreased significantly in pituitary tissue due to mobilization of the hormonal stores contained in secretory granules. On the other hand, the withdrawal of stimuli blocked the hormonal release; this is reflected by the accumulation of both hormones and secretory granules in pituitary tissue. The strict correlation between the size of the GH and TSH populations with stimulation and inhibition of hormonal secretory activity reported in this investigation further supports the critical role played by the cell renewal process in endocrine secretion.  相似文献   

11.
12.
SEPs were elicited by stimulation of the dorsal penile nerve (DPN) or posterior tibial nerve (PTN) under 3 conditions of stimulation: random and constant interstimulus intervals, and subject-initiated stimulation. Within these conditions, the effects of repeated stimulation were also examined. The latency of the N90 peak decreased with repeated stimulation. N90 amplitude decreased with increased foreknowledge as well as with repeated stimulation. Factors extracted by principal components analysis revealed similar effects. A difference between DPN and PTN stimulation was seen in a factor associated with the N90 peak, wherein the condition involving subject self-initiation of the stimulus reflected a significantly greater decrease in SEP amplitude when the DPN was stimulated. Morphological commonalities were observed in the SEPs elicited by DPN and PTN for a given subject.  相似文献   

13.
14.
The present study examines the coexistence of neurons in the same cardiovascular point of the pontomedulla that integrates urinary bladder (UB) motility, and pelvic nerve activity (PNA). Microinjection of monosodium L-glutamate (Glu) into the locus coeruleus (LC), the gigantocellular tegmental field (FTG), the rostral ventrolateral medulla (RVLM), and the dorsomedial medulla (DM) produced pressor responses, whereas injection into the lateral tegmental field (FTL), the nucleus of tractus solitarii (NTS), and the caudal ventrolateral medulla (CVLM) produced depressor responses. However, microinjection of Glu into the dorsomotor nucleus of the vagus (DMV) and the ambiguus nucleus (AN), where the vagus nerve originates, produced marked bradycardia. Many of these cardiovascular responses were accompanied by increased, or decreased parasympathetic PNA. In six animals, sympathetic renal nerve activity (RNA) and PNA also increased simultaneously during the pressor response. The present study also examines the connection between the DMV-AN and the sacral intermediolateral column (IML), where parasympathetic preganglionic neurons (PGNs) of the pelvic nerve located. Biotinylated dextran amine (BDA), an anterograde tracer, was iontophoretically injected into the DMV or AN. No labelled terminal or neuron was detected in the sacral IML, but labelled terminals were observed in the bilateral LC, and also in the bilateral sides of the FTG, FTL, RVLM, DM, and CVLM. These results suggest that neurons of the DMV and/or AN may indirectly regulate the sacral parasympathetic PGNs through the LC for supraspinal control of the pelvic nerve. Furthermore, these results also suggest the coexistence of multiple autonomic integrating mechanisms of different kinds within various cardiovascular areas of the pontomedulla.  相似文献   

15.
16.
17.
In cats anesthetized with chloralose and pentobarbital stimulation of the infraorbital nerve by a volley of 3 or 4 stimuli 1.2 times stronger than the threshold for excitation of A-fibers caused the generation of action potentials in motoneurons of the masseter muscle if the frequency of stimuli in the volley exceeded 300/sec. Paired stimuli with a strength of 2.0 thresholds, and with an interval of 1.3–4.0 msec between stimuli, led to generation of an action potential by the motoneurons. If the interval exceeded 4 msec stimulation with a strength of 1.2–2.0 thresholds caused biphasic facilitation of the second EPSP with a facilitation factor of between 0.2 and 1.0. The small number of stimuli, combined with their high frequency in the volley, required for action potential generation by masseter motoneurons suggests that they are due to activation of A-fibers of the infraorbital nerve connected with fast-adapted receptors of the vibrissae.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 4 pp. 385–389, July–August, 1978.  相似文献   

18.
Intracellular recordings were made from the taste cells of atropinized bullfrogs while the glossopharyngeal (GP) nerve fibres were electrically stimulated. Two types of slow potential, slow hyperpolarizing potentials (HPs) and slow depolarizing potentials (DPs), were induced in the taste cells. The slow HPs appeared when the lingual capillary blood flow was kept above 0.7 mm/s, whereas the slow DPs appeared when the blood flow was slowed down below 0.7 mm/s. The membrane resistance of a taste cell increased during the generation of a slow HP, but decreased during the generation of a slow DP. The reversal potentials for the slow HPs and the slow DPs were recorded at the same membrane potential (-11 to approximately -13 mV). Activation of non-selective cation channels possibly induced the slow DP and inactivation of those channels possibly induced the slow HP in the taste cell membrane. Electrical stimulation of the GP nerve activated a population of C fibres in the nerve and possibly released neurotransmitters from the nerve terminals. Released neurotransmitters might cause modulation of the membrane conductance in taste cells that leads to generation of the slow potentials. The present data suggest that slow HPs and slow DPs evoked in the taste cells of atropinized frogs by GP nerve stimulation are induced by putative neurotransmitters in the taste disc.  相似文献   

19.
Splanchnic nerve stimulation in bursts at low (5 Hz) and high (50 Hz) frequency (30 V, 1 msec; train duration 1 sec; train rate 0.5/second) was employed in 10 cats under halothane anesthesia, during 10-minute periods, while blood samples were concurrently collected from the adrenal vein and femoral artery for the measurement of norepinephrine (NE), epinephrine (EPI), dopamine (DA), Met-enkephalin (ME), neuropeptide Y (NPY), peptide YY (PYY) and neurotensin (NT). In Group I (n = 5), splanchnic nerve stimulation was initially applied at 5 Hz followed after 20 min by a 50 Hz stimulus, while in Group II (n = 5) the stimulation sequence was reversed. Adrenal vein and femoral artery plasma levels of catecholamines and neuropeptides were not significantly affected by the stimulation sequence, while a significant decrease in blood pressure response was observed in Group II during the 5 Hz stimulation as compared to Group I, indicating desensitization. Splanchnic nerve stimulation at 5 Hz caused a preferential increase in adrenal vein NE (9-fold) versus EPI (7-fold) levels as compared to baseline, while 50 Hz stimulation led to further comparable increases in NE (5-fold) and EPI (6-fold) levels. Significant increases in adrenal vein DA and neuropeptide levels were only observed during 50 Hz stimulation, with DA showing a 5-fold, ME a 2.6-fold and NPY a 3-fold increase as compared to 5 Hz stimulation, and NT a 3.6-fold increase as compared to baseline. Present findings indicate different dynamics in the movement of catecholamines and neuropeptides from the adrenal.  相似文献   

20.
Changes in the arterial pressure, in the heart and respiratory rate evoked by the gastrocnemuis nerve stimulation were studied on conscious cats before and during intravenous injection of noradrenaline. Stimulation of the gastrocnemius nerve increased the arterial pressure, the heart and respiratory rates. The same stimulation of the nerve during hypertension caused by noradrenaline injection led to the fall of arterial pressure and tachycardia. The depressor response failed to change under the effect of the beta-adrenoreceptor block and disappeared after the m-cholinoreceptor block with methylatropine. The depressor response was absent in the unanesthetized decerebrated cats. It is supposed that the depressor response of the arterial pressure depended on the strong cholinergic vasodilatation, reflexively evoked by stimulation of the motor nerve in the intact cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号