首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.
  • 1 Field studies were carried out to determine the effects of intra-tree variation in the time of budburst of white spruce, Picea glauca Moench (Voss.), on the behaviour and survivorship of, and herbivory by, the spruce bud moth, Zeiraphera canadensis Mutt. & Free.
  • 2 There was significant variation in the time of budburst among whorls, shoots and buds. Budburst was acropetal, with buds in the interior of the lower crown bursting first and terminal buds on terminal shoots in the upper crown bursting last.
  • 3 Bud moths laid the greatest proportion of their eggs in the middle of the crown and egg hatch was usually best synchronized to budburst in this region. Many eggs hatched before terminal buds on terminal shoots in the upper crown had burst and thus intra-tree variation in budburst decreased the probability that first-instar larvae would colonize the most important plant parts for growth.
  • 4 However, many later instars dispersed upwards and outwards in the crown and colonized the late bursting buds in the upper crown. Such dispersal reduces the effectiveness of intra-plant variation in budburst to reduce herbivory and permits Z.canadensis to eat young nutritious buds for a longer period of time.
  • 5 Intra-tree variance in the date of budburst was greater than that between trees but there were no consistent differences between the intra-tree variance of trees in half-sib families with high or low susceptibility to Z.canadensis. Differences between trees in herbivory, bud moth density and survivorship were not related to the amount of intra-tree variation in budburst.
  相似文献   

2.
Abstract.
  • 1 The independent and interacting effects of plant genotype and site (i.e. environment) on the acceptability of white spruce, Picea gluaca (Moench) Voss, to the spruce bud moth, Zeiraphera canadensis Mut. & Free. and on plant suitability for egg development, were studied at four sites in New Brunswick, Canada.
  • 2 A greater proportion of shoots on trees in two half-sib families, previously designated as highly susceptible, were partially eaten by spruce bud moths than shoots on trees in two half-sib families with low susceptibility.
  • 3 At the site with the highest bud moth population, oviposition was highest on trees in susceptible families and on branches damaged by bud moth larvae. Oviposition was not higher on trees in susceptible families at the other three sites, resulting in a strong tree genotype × site interaction for oviposition.
  • 4 Although there was a significant tree genotype × site interaction for egg predation, egg survival was higher on trees in susceptible families at all sites, due to lower levels of egg parasitism and predation.
  • 5 Egg densities were positively but weakly correlated to shoot length and diameter. There were no consistent relationships between shoot length, shoot diameter, needle length or needle density and per cent egg survival, parasitism or predation.
  • 6 Because egg survival was higher on trees in susceptible families at all sites but egg densities were only higher on trees in susceptible families at one site, host plant acceptability and suitability were positively related at only one site. We speculate that Z.canadensis does not distinguish between hosts of different suitability until trees are heavily damaged.
  相似文献   

3.
Summary Since the early 1980s, the winter moth, Operophtera brumata L. (Lepidoptera: Geometridae) has emerged as a serious pest of Sitka Spruce, Picea sitchensis Bong. plantations in southern Scotland. Outbreaks are characterised by susceptible sites within plantations which can occur immediately adjacent to resistant sites. We investigated the level of some nutrients in the trees, the date of budburst of the trees, and the numbers of some potential predators of winter moth pupae. None could satisfactorily explain outbreak patterns. Although foliage analysis demonstrated that many trees were marginal or deficient in phosphorus, nitrogen and potassium, these deficiencies were not related to the susceptibility of a site. Within sites, the numbers and weights of O. brumata were positively related to phosphorus content and negatively related to calcium content of foliage. Other evidence suggests, however, that these correlations may not represent direct effects of phosphorus and calcium on larval growth and survival. Date of budburst, which commonly determines susceptibility of deciduous hosts to O. brumata, was unrelated to density, and pupal predators were more, not less, abundant in susceptible sites. Although it is difficult to distinguish between factors that initiate outbreaks and those that maintain them, these data suggest that nutrient deficiencies of trees, budburst date, and the distribution of pupal predators of the winter moth cannot explain patterns of outbreak of the winter moth on spruce.  相似文献   

4.
Abstract.
  • 1 A combination of variables reflecting leaf quality provided the best predictive model explaining differences in population trend of Glycaspis spp. among individuals of the food plant Eucalyptus blakelyi, measured under field conditions on an egg to egg basis. The equation incorporated the product of: (1) proportion of foliage in each age class; (2) probability of foliage escape from herbivory; (3) preference for the foliage class measured as the proportion of eggs oviposited on it by the female; these variables being summed over the young and mature age classes.
  • 2 In addition, significant and consistent differences in insect survivorship among trees were demonstrated by transfer experiments. These experiments established that young foliage was preferable to mature foliage for first instar survival. Differences in insect survivorship also showed a consistent pattern among the study trees. The most probable explanation for this consistent pattern was the influence of the trees on the insects, particularly physiological or biochemical differences among trees. It was not, however, possible to identify the cause of the differences.
  相似文献   

5.
Although herbivory often reduces the reproduction of attacked trees, few studies have examined how naturally occurring insect-resistant and susceptible trees differ in their reproduction, nor have these effects been experimentally examined through long-term herbivore removals. In addition, few studies have examined the effects of herbivory on the quality of seeds produced and the implications of reduced seed quality on seedling establishment. We evaluated the impact of chronic herbivory by the stem-boring moth, Dioryctria albovittella, on cone and seed production of the pinyon pine (Pinus edulis) during two mast years. Three patterns emerged. First, moth herbivory was associated with reductions in cone production, viable seed production and seed mass. Specifically, pinyons susceptible to moth attack had 93–95% lower cone production, and surviving cones produced 31–37% fewer viable seeds, resulting in a 96–97% reduction in whole tree viable seed production. In addition, surviving seeds from susceptible trees had 18% lower mass than resistant trees. Second, long-term experimental removal of the herbivore resulted in increased rates of cone and seed production and quality, indicating that moth herbivory was the driver of these reductions. Third, seed size was positively associated with seed germination and seedling biomass and height, suggesting that trees suffering chronic herbivory produce poorer quality offspring. Thus, the resistance traits of pinyons can affect the quality of offspring, which in turn may affect subsequent seedling establishment and population dynamics.  相似文献   

6.
R. C. Dewar  A. D. Watt 《Oecologia》1992,89(4):557-559
Summary The impact of climatic warming on the synchrony of insect and plant phenologies was modelled in the case of winter moth (Operophtera brumata) and Sitka spruce (Picea sitchensis) in the Scottish uplands. The emergence of winter moth larvae was predicted with a thermal time requirement model and the budburst of Sitka spruce was predicted from a previously published model (Cannell and Smith 1983) based on winter chilling and thermal time. The date of emergence of winter moth larvae was predicted to occur earlier under climatic warming but the date of budburst of Sitka spruce was not greatly changed, resulting in decreased synchrony between larval emergence and budburst. The general question of how a change of climate might affect phenological synchrony and insect abundance is discussed.  相似文献   

7.
Abstract.
  • 1 The adaptation of the non-migratory galling aphid Kaltenbachiella japonica (Matsumura) to the budburst phenologies of individual host trees (Ulmus davidiana var. japonica Nakai) was investigated. There was a large variation in budburst time between individual host trees. We tested a hypothesis that aphid populations on respective host trees are genetically differentiated through adaptation to the budburst phenologies of host trees.
  • 2 There was significant correlation between the budburst time of eight host trees in two successive years.
  • 3 Tree-associated populations differed significantly in egg-hatching time, and the mean hatching time was significantly correlated with the mean budburst time of respective host trees.
  • 4 Mating was made between male and female sexuales of the same clone (i.e. self-mating) to obtain selfed eggs. Hatching patterns of selfed eggs showed that there was a substantial amount of genetic variance in hatching time between clones (galls). Nested ANOVA demonstrated that the between-tree component contributed more to the phenotypic variance than the within-tree or within-gall components.
  • 5 Reciprocal crosses between males and females of different clones furthermore demonstrated significant differences in hatching time between cross combinations, but no significant differences between the two reciprocals within combinations. This result suggests that there are no maternal effects for the timing of egg hatch and that the differences between selfed lines are attributable to genetic variance.
  • 6 The fine-scale adaptation hypothesis was supported by egg-hatching experiments, which further suggest that budburst phenology varying between individual trees is acting as intense selective pressure on the egg-hatching time of associated insects.
  相似文献   

8.
Variation in budburst phenology among individual trees of interior Douglas-fir (Pseudotsuga menziesii var. glauca [Beissn.] Franco) may influence their susceptibility to western spruce budworm (Choristoneura occidentalis Freeman) defoliation. We tested the hypothesis that phenological asynchrony between Douglas-fir and the western spruce budworm is a mechanism of resistance using clones derived from parent trees that showed resistance versus susceptibility to C. occidentalis defoliation in the field. Susceptible clones had earlier budburst phenology compared with resistant clones when they were grown in a common greenhouse environment, demonstrating a genetic basis for parallel phenological differences exhibited by the parent trees. We tested the importance of phenological asynchrony as a factor influencing fitness of C. occidentalis using two different greenhouse bioassay experiments. One experiment compared western spruce budworm performance on equivalent phenological stages of susceptible and resistant clones by matching larval feeding to the columnar (fourth) bud development stage of each clone. Larvae reared on resistant clones had greater realized fitness (i.e., number of F1 offspring produced) than those reared on susceptible clones when the influence of variation in budburst phenology was minimized. In the other experiment, western spruce budworm larvae were placed on all trees on the same date when approximately 50% of all terminal buds in the population were in the yellow (second) budburst stage. Larvae reared on susceptible clones had greater realized fitness than those reared on resistant clones when the influence of phenological asynchrony was expressed. Our results suggest that resistant phenotypes of Douglas-fir have negative effects on survival and reproduction of C. occidentalis under the natural conditions that insects and trees experience in the field. Genetic variation among trees in budburst phenology has an important influence on interactions between the western spruce budworm and Douglas-fir.  相似文献   

9.
10.
Current climate models predict a shift to warmer, drier conditions in the southwestern US. While major shifts in plant distribution are expected to follow these climate changes, interactions among species and intraspecific genetic variation rarely have been incorporated into models of future plant distributions. We examined the drought‐related mortality of pinyon pine (Pinus edulis) in northern Arizona focusing on trees that showed genetically‐based resistance or susceptibility to a nonlethal herbivore, the shoot‐boring moth, Dioryctria albovittella. Because moth resistant trees have outperformed susceptible trees during 20 years of study, and herbivory has been shown to increase drought related mortality, we expected higher mortality rates in susceptible trees. However, our field observations and greenhouse experiments showed several unexpected patterns relevant to understanding the consequences of climate change: (1) The mortality of adult P. edulis resistant to the moth was three times higher than the mortality of trees susceptible to the moth. (2) Over a few years, differential mortality caused a shift in stand structure from resistant dominated to equality (3 : 1 resistant : susceptible to 1 : 1). (3) Adult moth resistant trees suffered significantly greater water stress than adult moth susceptible trees, suggesting that variation among the two groups in drought tolerance may be a mechanism for differential mortality. (4) When grown under drought conditions in the greenhouse, seedlings from resistant mothers died sooner than seedlings from susceptible mothers. These data support the hypothesis that drought can act as an agent of balancing selection and that drought resistance is a heritable trait. Taken together, our findings suggest that genetic variation in a population can be an important factor in determining its response to future climate change, and argue for the inclusion of genetics into models developed to understand the consequences of climate change.  相似文献   

11.
  • 1 By examining variation in the abilities of polyphagous insects to develop on host plants with secondary metabolites that they have never encountered previously, we may be able to gain some insights into the nature of evolution of biochemical mechanisms to process plant secondary metabolites by phytophagous insects.
  • 2 The present study aimed to examine variation in the ability of gypsy moth larvae Lymantria dispar (Lymantriidae) to complete development on different species of the plant genus Eucalyptus (Myrtaceae). Leaves of at least some Eucalyptus species contain formylated phloroglucinol derivatives. These are secondary metabolites that are evolutionarily unfamiliar to the gypsy moth.
  • 3 Larvae of gypsy moth showed extremely variable responses in larval performance between Eucalyptus species, between individual trees within host plant species, between moth populations, and between individuals within moth populations.
  • 4 Larval survivorship was in the range 0–94%, depending on the host. Failure of at least some larvae to complete development on some Eucalyptus species indicates that gypsy moth larvae have a limited ability to process secondary metabolites in eucalypt leaves.
  • 5 At least some individuals, however, appear to already possess biochemical mechanisms that process the secondary metabolites in leaves of Eucalyptus species, and therefore the abilities of larvae to complete development on phylogenetically and chemically unfamiliar hosts are already present before the gypsy moth encounters these potential hosts.
  相似文献   

12.
Chronic herbivory by the stem-boring moth (Dioryctria albovittella) alters the sexual expression of a monoecious tree, pinyon pine (Pinus edulis) by reducing female function and increasing male function. Observations and long-term moth removal experiments show that 55% of susceptible trees can lose all female function. Moth herbivory has little effect on male function in young trees, but has an important effect on older trees, where moth-susceptible trees produced 1.5 times more pollen than moth-resistant trees. Susceptible trees were 6.5 times more likely to exhibit male-only function than either resistant trees or susceptible trees that have had their moths experimentally removed. This herbivore-induced sex change is caused primarily by differential moth attack and the resulting mortality of the shoots that bear female reproductive structures. Moth attack rates were positively correlated with individual stem biomass (female stems >non-reproductive stems >male stems). Moth attack also increased conelet abortion on unattacked shoots, indicating that moths indirectly reduce female function. Moth-induced altering of sexual function is also expressed at the population level. Male function is relatively greater in stands with high moth densities on stressful soils than in stands with few moths. Under certain conditions, sexual selection theory suggests that the negative effects on female function could be overcome with greater investment in male function. Because susceptible trees produce large amounts of pollen and are more abundant than moth-resistant trees, frequency-dependent selection may counteract selection against susceptible genotypes. Plant-herbivore interaction studies typically examine negative impacts of herbivory on female function, but not positive effects on male function. Here we demonstrate that herbivory may have important effects on the evolutionary ecology of pinyon by both promoting male function and depressing female function.  相似文献   

13.
  • 1 Western spruce budworm Choristoneura occidentalis Free. (Lepidoptera: Tortricidae) emerge in the spring before budburst and then face a rapidly deteriorating host quality each season.
  • 2 Measures of fitness, survival and fecundity, were made on cohorts of final‐instar spruce budworms deployed on host trees at several times during the season in four field locations in coastal and interior British Columbia, Canada.
  • 3 Survival and fecundity were strongly correlated throughout the season and varied as much as four‐fold from maxima at mid‐season to minima at the end of the season.
  • 4 Fitness values overall were greatest in the coastal compared with interior locations. Among interior locations, fitness was greatest at the highest elevation and least at the lowest elevation. Both cohort and sample‐based estimates of survival of wild, final‐instar budworms were relatively high in these outbreak populations.
  • 5 The influence of the phenological window and degree of synchrony with the host plant on herbivore abundance often depends on other processes affecting population rates of change.
  相似文献   

14.
  • 1 After storm disturbances, there is a risk for degradation of the quality of fallen trees, and for subsequent tree mortality caused by the spruce bark beetle Ips typographus (L.) (Coleoptera: Curculionidae). Models assessing the risk for bark beetle colonization of different kinds of storm gaps would be a valuable tool for management decisions.
  • 2 The present study aimed to determine which gap and landscape characteristics are correlated with the probability of colonization of wind‐felled Norway spruce trees by I. typographus.
  • 3 The study included 36 storm gaps, varying in size from three to 1168 wind‐felled spruces, created by the storm Gudrun in southern Sweden in January 2005.
  • 4 In the first summer, on average, 5% of the wind‐felled spruces were colonized by I. typographus. The percentage of colonized wind‐felled trees per gap was negatively correlated with the total area of storm gaps within 2000 m in the surrounding forest landscape.
  • 5 In the second summer, the proportion of colonized trees increased to 50%. Both gap (mean diameter of wind‐felled trees and basal area of living spruce trees) and landscape variables (amount of spruce forest) were significantly correlated with colonization percentage and explained almost 50% of the variation between gaps.
  • 6 There was no relationship between gap area and colonization percentage. This implies that landscapes with many large storm gaps, where logging resources will be most effectively used, should be salvaged first.
  相似文献   

15.
We examined the impact of soil stress (low water and nutrient availabilities) and two keystone insect herbivores on pinyon pine (Pinus edulis) needle litterfall. We compared trees growing on two distinct soil types: volcanic cinders, which exhibit pronounced water and nutrient limitation, and sandy-loam soils, which have higher water-storage capacity and nutrient availability. Using two long-term herbivore removal experiments (15 and 18 years, respectively), we also examined the effects of the pinyon needle scale (Matsucoccus acalyptus, which attacks juvenile trees) and the stem-boring moth (Dioryctria albovittella, which attacks mature trees) on pinyon litterfall. These herbivores reach high densities on cinder soils but are absent or occur at much lower levels on sandy-loam soils. Four years of litterfall measurements showed four major patterns. First, independent of herbivory, needle litterfall was 20% lower under trees on high-stress cinder soils than on sandy-loam soils. Second, in agreement with the negative impact of scales on tree growth (that is, a 30% decline in stem growth), trees with scale infestations had 25% lower litterfall rates than trees resistant to scale; however, 15 years of scale-insect removal did not significantly increase needle litterfall. This implies possible intrinsic differences in litter production between scale-resistant and scale-susceptible trees. Third, in contrast with significant negative effects of moth herbivory on tree growth (that is, a 27% decline in stem growth), moth herbivory had no effect on needle litterfall. This, along with increased stem density in moth-susceptible trees, may be evidence of compensatory production. Fourth, there were strong year by soil type and year by scale herbivory interactions, such that in some years the effect on litterfall can be obscured or reversed by some other factor. In summary, soil stress has a strong and predictable effect on needle litterfall, whereas the relationship between insect herbivory and needle litterfall is weaker and depends on the individual herbivore. These effects, however, are mediated by other environmental factors that have considerable annual variation.  相似文献   

16.
17.
18.
19.
  1. Wood ants, species of the subgenus Formica s. str., are one of the most important groups of insects in forest ecosystems due to their high abundance and activity.
  2. We assessed the foraging pressure of Formica polyctena and Formica rufa, two dominant wood ant species in the Białowieża Forest. In addition, we compared coniferous and mixed stands in these respects.
  3. In mixed stands F. polyctena visited more trees per plot than F. rufa. F. polyctena might forage a larger area due to higher population sizes, which further confirms higher foraging pressure of F. polyctena in comparison with F. rufa.
  4. In our study area, host trees of the ant–aphid mutualism were larger in diameter than nonhost trees. The ants also preferred trees situated closer to their nests. In both mixed and coniferous stands, the most visited tree species was Norway spruce. Thus, we can conclude that Norway spruce seems to be preferred by the ant. The decline of living spruce in the Białowieża Forest may endanger their food source and impact the vitality of ant colonies.
  相似文献   

20.
  1. Spring phenological synchrony can be important for tree-insect interactions. Depending on the magnitude and direction of phenological shifts, overwintering insects could be affected in many ways, for example, facing starvation or having to contend with increased chemical or physical defences of host trees. If temperature has different influences on the phenology of trees and insects, climate change can alter spring phenological synchrony.
  2. In this experiment, we exposed tamarack seedlings and larch case bearer larvae from Minnesota, USA, to a variety of chilling and forcing temperatures and measured spring phenology (twig bud break and larval activation). We additionally measured case bearer performance on seedlings that were exposed to different forcing × chilling levels, tracking larval survivorship to adulthood.
  3. Warmer forcing enhanced larval activation and bud break, but larval development slowed down past 21°C. Higher chilling temperatures accelerated bud break, but the effect was inconclusive for larvae. There was no chilling × forcing interaction for either species. Spring activity accelerated more quickly with increases in temperature for larvae than for seedlings, resulting in increased phenological synchrony at warmer temperatures. Activation rates for overwintering larvae were highest at 27°C, while survivorship to adulthood following spring activation was highest at 21°C. At temperatures at or beyond 27°C, no larvae reached adulthood.
  4. Warmer winters and springs will likely initially increase spring synchrony between tamarack and larch case bearer, exposing larvae to younger, potentially more nutritious foliage, but extremely warm spring temperatures may decrease survivorship of larvae to adulthood.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号