首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The renin locus (Ren) on rat Chromosome (Chr) 13 had previously been shown to cosegregate with blood pressure in crosses involving Dahl salt-sensitive (S) and Dahl salt-resistant (R) rats. In the present work, interval mapping of blood pressure on Chr 13 with a large F2 (S × R), n = 233, population yielded a maximum LOD = 4.2 for linkage to blood pressure, but the quantitative trait locus (QTL) was only poorly localized to a large 35-centiMorgan (cM) segment of Chr 13. In the linkage analysis, the S-rat QTL allele (S) was associated with higher, and the R-rat QTL allele (R) with lower blood pressure, the difference between homozygotes being about 20 mm Hg. A congenic strain was made by introgressing the R-rat Ren allele into the recipient S strain. This congenic strain showed a 24 mm Hg reduction (P = 0.004) in blood pressure compared with S rats for rats fed 2% NaCl diet for 24 days; this difference was confirmed by two other independent tests. Two congenic substrains were derived from the first congenic strain with shorter R Chr 13 segments on the S background. Comparisons among these congenic strains showed that a blood pressure QTL was in the 24-cM chromosomal segment between Syt2 and D13M1Mit108. This segment does not include the renin locus, which is thus excluded from being the gene on rat Chr 13 responsible for genetic differences in blood pressure detected by linkage analysis. Received: 20 December 1996 / Accepted: 7 April 1997  相似文献   

2.
A region on rat Chromosome (Chr) 2 of the Dahl salt-sensitive rat (S) was shown previously to contain a quantitative trait locus (QTL) for blood pressure (BP). This was achieved first by linkage, followed by the use of congenic strains. A congenic strain, designated S.MNS-D2Mit6/Adh, contained a segment of Chr 2 from the Milan Normotensive (MNS) rat in the S genetic background. Since the region containing the QTL was roughly 80 cM in size, a further reduction was needed towards the positional or candidate gene cloning. Currently, two congenic substrains were made from the original strain S.MNS-D2Mit6/Adh. One of these two substrains showed a BP-lowering effect, whereas the other substrain did not. Deducing the segment not shared in the two substrains, the BP QTL has to be present in a chromosome region of roughly 5.7 cM between the marker D2Rat303 and the locus for the neutroendopeptidase gene (Nep). Nep is not included within the segment. This region does not seem to contain any candidate genes well known for the BP control. Thus, the final identification of the QTL will most likely lead to the discovery of a brand new gene for the BP regulation. Received: 14 December 2000 / Accepted: 18 January 2001  相似文献   

3.
4.
A Chromosome (Chr) 16 segment of the Dahl salt-sensitive (S) rat was shown by linkage to contain a blood pressure (BP) quantitative trait locus (QTL). To verify and further narrow down the region harboring the QTL, we made two congenic strains by replacing two segments of the S rats with the homologous segments of the Lewis (LEW) rats. The construction of these congenic strains was facilitated by a genome-wide marker screening. The two congenic strains contained a segment in common, and BPs of both were significantly lower than that of the S strain. Consequently, a BP QTL could be localized to the overlapping region of about 49.4 centiRay (cR) including the telomere on a radiation hybrid map. Heart weights, left and right ventricular weights, kidney weights, and aortic weights over length were all significantly decreased in the congenic strains compared with the S strain. Thus, there appeared to exist an association between the effects of the QTL on BP and on cardiac, renal, and vascular hypertrophy.  相似文献   

5.
Multiple blood pressure (BP) quantitative trait loci (QTLs) are reported on rat chromosome 10 (RNO10). Of these, QTLs detected by contrasting the genome of the hypertensive Dahl salt-sensitive (S) rat with two different relatively normotensive strains, Lewis (LEW) and the Milan normotensive strain (MNS), are reported. Because the deduced QTL regions of both S vs. LEW and S vs. MNS comparisons are within large genomic segments encompassing more than 2 cM, there was a need to further localize these QTLs and determine whether the QTLs are unique to specific strain comparisons. Previously, the S.MNS QTL1 was mapped to less than 2.6 cM as a differential segment between two congenic strains. In this study, multiple congenic strains spanning the projected interval were studied. The BP effect of each strain was interpreted as the net effect of alleles introgressed within that congenic strain. The results suggest that the MNS alleles within the previously proposed differential segment (D10Rat27-D10Rat24) do not independently lower BP of the S rat. However, another congenic strain, S.MNS(10) × 9, containing introgressed MNS alleles that are outside of the previously proposed differential segment is of interest because (1) it demonstrated a BP-lowering effect, (2) it is contained within a single congenic strain and is not based on the observed effect of a differential segment, and, more importantly, (3) it overlaps with the previously identified S.LEW BP QTL region. Identification of the same QTL affecting BP in multiple rat strains will provide further support for the QTL’s involvement and importance in human essential hypertension.  相似文献   

6.
There is enough evidence through linkage and substitution mapping to indicate that rat chromosome 1 harbors multiple blood pressure (BP) quantitative trait loci (QTLs). Of these, BP QTL1b was previously reported from our laboratory using congenic strains derived by introgressing normotensive alleles from the LEW rat onto the genetic background of the hypertensive Dahl salt-sensitive (S) rat. The region spanned by QTL1b is quite large (20.92 Mb), thus requiring further mapping with improved resolution so as to facilitate systematic identification of the underlying genetic determinant(s). Using congenic strains containing the LEW rat chromosomal segments on the Dahl salt-sensitive (S) rat background, further iterations of congenic substrains were constructed and characterized. Collective data obtained from this new iteration of congenic substrains provided evidence for further fragmentation of QTL1b with improved resolution. At least two separate genetic determinants of blood pressure underlie QTL1b. These are within 7.40 Mb and 7.31 Mb and are known as the QTL1b1 region and the QTL1b2 region, respectively. A genetic interaction was detected between the two BP QTLs. Interestingly, five of the previously reported differentially expressed genes located within the newly mapped QTL1b1 region remained differentially expressed. The congenic strain S.LEW(D1Mco36-D1Mco101), which harbors the QTL1b1 region alone but not the QTL1b2 region, serves as a genetic tool for further dissection of the QTL1b1 region and validation of Nr2f2 as a positional candidate gene. Overall, this study represents an intermediary yet obligatory progression towards the identification of genetic elements controlling BP. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. E. J. Toland and Y. Saad contributed equally to this work.  相似文献   

7.
A broad Chromosome (Chr) 10 region of the Dahl salt-sensitive (S) rat was shown by linkage and the use of congenic strains to contain a blood pressure (BP) quantitative trait locus (QTL). To further narrow down the region harboring the QTL, four congenic strains carrying smaller segments were made by replacing various segments of the S rats with the homologous segments of the Lewis (LEW) rats. The construction of these congenic strains was facilitated by a genome-wide marker screening. One congenic strain, assigned as S.L4, showed a BP-lowering effect, and the region harboring a BP QTL, designated QTL1, is localized to a segment of about 15 cM. Two other strains, assigned as S.L2 and S.L5, contained an overlapping segment, and both showed a BP-lowering effect. In contrast, the fourth congenic strain, assigned as S.L1, contained a smaller and shared fragment with S.L2 and S.L5, but it did not have a BP-lowering effect. Deducing from the segment in common in S.L2 and S.L5, and not shared between S.L1 and both congenic strains S.L2 and S.L5, the region harboring a QTL, designated as QTL2, was narrowed to about 12 cM. The current work showed the general applicability of the `speed congenic' approach to map and fine-map BP QTL. Received: 1 February 2001 / Accepted: 29 March 2001  相似文献   

8.
Lee SJ  Liu J  Westcott AM  Vieth JA  DeRaedt SJ  Yang S  Joe B  Cicila GT 《Genetics》2006,174(4):2203-2213
Substitution mapping was used to refine the localization of blood pressure (BP) quantitative trait loci (QTL) within the congenic region of S.R-Edn3 rats located at the q terminus of rat chromosome 3 (RNO3). An F2(SxS.R-Edn3) population (n=173) was screened to identify rats having crossovers within the congenic region of RNO3 and six congenic substrains were developed that carry shorter segments of R-rat-derived RNO3. Five of the six congenic substrains had significantly lower BP compared to the parental S rat. The lack of BP lowering effect demonstrated by the S.R(ET3x5) substrain and the BP lowering effect retained by the S.R(ET3x2) substrain together define the RNO3 BP QTL-containing region as approximately 4.64 Mb. Two nonoverlapping substrains, S.R(ET3x1) and S.R(ET3x6), had significantly lower BP compared to the S strain, indicating the presence of two distinct BP QTL in the RNO3 q terminus. The RNO3 q terminus was fine mapped with newly developed polymorphic markers to characterize the extent of the congenic regions. The two RNO3 BP QTL regions were thus defined as within intervals of 0.05-1.12 and 0.72-1.25 Mb, respectively. Also important was our difficulty in fine mapping and marker placement in this portion of the rat genome (and thus candidate gene identification) using the available genomic data, including the rat genome sequence.  相似文献   

9.
A quantitative trait locus (QTL) linked with ability to find a platform in the Morris Water Maze (MWM) was located on chromosome 17 (Nav-5 QTL) using intercross between Dahl S and Dahl R rats. We developed two congenic strains, S.R17A and S.R17B introgressing Dahl R-chromosome 17 segments into Dahl S chromosome 17 region spanning putative Nav-5 QTL. Performance analysis of S.R17A, S.R17B and Dahl S rats in the Morris water maze (MWM) task showed a significantly decreased spatial navigation performance in S.R17B congenic rats when compared with Dahl S controls (P = 0.02). The S.R17A congenic segment did not affect MWM performance delimiting Nav-5 to the chromosome 17 65.02–74.66 Mbp region. Additional fine mapping is necessary to identify the specific gene variant accounting for Nav-5 effect on spatial learning and memory in Dahl rats.  相似文献   

10.
Previously we reported that there is a blood pressure quantitative trait locus (QTL) on rat Chromosome (Chr) 7 seen when comparing Dahl salt-sensitive (S) rats and Dahl salt-resistant (R) rats. Evidence was also presented that this QTL was due to genetic variants in the adrenal steroidogenic enzyme 11beta-hydroxylase ( Cyp11b1). A series of congenic strains supported this contention. In the present work we have constructed a final congenic substrain that retains a blood pressure effect and that has an introgressed congenic segment which includes Cyp11b1 and is < 177 kb in size. None of the other genes in the congenic region (eight known genes) have known biological functions for influencing blood pressure. We believe that we have reached the limit of resolution for congenic analysis of a QTL in a rodent animal model, and we conclude that Cyp11b1 causes the observed QTL on rat Chr 7 in Dahl rats.  相似文献   

11.
Linkage analysis previously demonstrated a blood pressure quantitative trait locus (QTL) on rat Chromosome 2 (Chr 2) in crosses utilizing Dahl salt-sensitive (S) rats. The present work dissects this QTL by using congenic strains in which segments of Chr 2 from Wistar Kyoto rats (WKY) are placed on the S genetic background. Two distinct QTLs were found where one QTL was anticipated. These each accounted for a blood pressure of 15–20 mm Hg in rats fed 2% NaCl diet for 24 days. One QTL was in the <9-cM interval between D2Rat35 and D2Wox18 (Fgg), and the other was in the <7-cM interval between D2Wox18 (Fgg) and D2Mgh10. A third tentative QTL was suggested, but not clearly established, in the <3-cM interval between D2Mgh10 and D2Rat259. Received: 26 July 2001 / Accepted 6 September 2001  相似文献   

12.
Our purposes were to develop a linkage map for rat Chromosome (Chr) 10, using chromosome-sorted DNA, and to construct congenic strains to localize blood pressure quantitative trait loci (QTL) on Chr 10 with the map. The linkage mapping panel consisted of three F2 populations totaling 418 rats. Thirty-two new and 29 known microsatellite markers were placed on the map, which spanned 88.9 centiMorgans (cM). The average distance between markers was 1.46 cM. No markers were separated by more than 6.8 cM. Four congenic strains were constructed by introgressing various segments of Chr 10 from the Milan normotensive strain (MNS) onto the background of the Dahl salt-sensitive (S) strain. A blood pressure QTL with a strong effect on blood pressure (35–42 mm Hg) when expressed on the S background was localized to a 31-cM region between D10Mco6 and D10Mcol. The region does not include the locus for inducible nitric oxide synthase (Nos2), which had been considered to be a candidate locus for the QTL. Received: 25 September 1996 / Accepted: 9 November 1996  相似文献   

13.
The detection of multiple sex-specific blood pressure (BP) quantitative trait loci (QTLs) in independent total genome analyses of F2 (Dahl S x R)-intercross male and female rat cohorts confirms clinical observations of sex-specific disease cause and response to treatment among hypertensive patients, and mandate the identification of sex-specific hypertension genes/mechanisms. We developed and studied two congenic strains, S.R5A and S.R5B introgressing Dahl R-chromosome 5 segments into Dahl S chromosome 5 region spanning putative BP-f1 and BP-f2 QTLs. Radiotelemetric non-stressed 24-hour BP analysis at four weeks post-high salt diet (8% NaCl) challenge, identified only S.R5B congenic rats with lower SBP (−26.5 mmHg, P = 0.002), DBP (−23.7 mmHg, P = 0.004) and MAP (−25.1 mmHg, P = 0.002) compared with Dahl S female controls at four months of age confirming BP-f1 but not BP-f2 QTL on rat chromosome 5. The S.R5B congenic segment did not affect pulse pressure and relative heart weight indicating that the gene underlying BP-f1 does not influence arterial stiffness and cardiac hypertrophy. The results of our congenic analysis narrowed BP-f1 to chromosome 5 coordinates 134.9–141.5 Mbp setting up the basis for further fine mapping of BP-f1 and eventual identification of the specific gene variant accounting for BP-f1 effect on blood pressure.  相似文献   

14.
Cicila GT  Garrett MR  Lee SJ  Liu J  Dene H  Rapp JP 《Genomics》2001,72(1):51-60
It was previously shown using Dahl salt-sensitive (S) and salt-resistant (R) rats that a blood pressure quantitative trait locus (QTL) was present on rat chromosome 7. In the present work, this QTL was localized to a region less than 0.54 cM in size on the linkage map using a series of congenic strains. This region was contained in a single yeast artificial chromosome that was 220 kb long. This small segment still contained the primary candidate locus Cyp11b1 (11beta-hydroxylase), but the adjacent candidate genes Cyp11b2 (aldosterone synthase) and Cyp11b3 were ruled out. It is concluded that 11beta-hydroxylase, through its known genetic variants altering the production of 18-hydroxy-11-deoxy corticosterone, is very likely to account for the blood pressure QTL on chromosome 7 in the Dahl rat model of hypertension. This QTL accounts for about 23 mm Hg under the condition of 2% NaCl diet for 24 days.  相似文献   

15.
Epidemiological studies have consistently found that hypertension is associated with poor cognitive performance. We hypothesize that a putative causal mechanism underlying this association is due to genetic loci affecting both blood pressure and cognition. Consistent with this notion, we reported several blood pressure (BP) quantitative trait loci (QTLs) that co-localized with navigational performance (Nav)-QTLs influencing spatial learning and memory in Dahl rats. The present study investigates a chromosome 2 region harboring BP-f4 and Nav-8 QTLs. We developed two congenic strains, S.R2A and S.R2B introgressing Dahl R-chromosome 2 segments into Dahl S chromosome 2 region spanning BP-f4 and Nav-8 QTLs. Radiotelemetric blood pressure analysis identified only S.R2A congenic rats with lower systolic blood pressure (females: −26.0 mmHg, P = 0.003; males: −30.9 mmHg, P<1×10−5), diastolic blood pressure (females: −21.2 mmHg, P = 0.01; males: −25.7 mmHg, P<1×10−5), and mean arterial pressure (females: −23.9 mmHg, P = 0.004; males: −28.0 mmHg, P<1×10−5) compared with corresponding Dahl S controls, confirming the presence of BP-f4 QTL on rat chromosome 2. The S.R2B congenic segment did not affect blood pressure. Testing of S.R2A, S.R2B, and Dahl S male rats in the Morris water maze (MWM) task revealed significantly decreased spatial navigation performance in S.R2A male congenic rats when compared with Dahl S male controls (P<0.05). The S.R2B congenic segment did not affect performance of the MWM task in males. The S.R2A female rats did not differ in spatial navigation when compared with Dahl S female controls, indicating that the Nav-8 effect on spatial navigation is male-specific. Our results suggest the existence of a single QTL on chromosome 2 176.6–179.9 Mbp region which affects blood pressure in both males and females and cognition solely in males.  相似文献   

16.
A general experimental design that allows mapping of a quantitative trait locus (QTL) into a 1-cM interval is presented. The design consists of a series of strains, termed ``interval-specific congenic strains (ISCS)'. Each ISCS is recombinant at a specific 1-cM sub-interval out of an ordered set of sub-intervals, which together comprise a wider interval, to which a QTL was previously mapped. It is shown that a specific and previously detected QTL of moderate or even small effect can be accurately mapped into a 1-cM interval in a program involving a total of no more than 1000 individuals. Consequently, ISCS can serve as the ultimate genetic mapping procedure before the application of physical mapping tools for positional cloning of a QTL. Received: 2 August 1996 / Accepted: 28 October 1996  相似文献   

17.
Cl(-) influx across the basolateral membrane is a limiting step in fluid production in exocrine cells and often involves functionally linked Cl(-)/HCO(3)(-) (Ae) and Na(+)/H(+) (Nhe) exchange mechanisms. The dependence of this major Cl(-) uptake pathway on Na(+)/H(+) exchanger expression was examined in the parotid acinar cells of Nhe1(-/-) and Nhe2(-/-) mice, both of which exhibited impaired fluid secretion. No change in Cl(-)/HCO(3)(-) exchanger activity was detected in Nhe2-deficient mice. Conversely, Cl(-)/HCO(3)(-) exchanger activity increased nearly 4-fold in Nhe1-deficient mice, despite only minimal or any change in mRNA and protein levels of the anion exchanger Ae2. Acetazolamide completely blocked the increase in Cl(-)/HCO(3)(-) exchanger activity in Nhe1-null mice suggesting that increased anion exchange required carbonic anhydrase activity. Indeed, the parotid glands of Nhe1(-/-) mice expressed higher levels of carbonic anhydrase 2 (Car2) polypeptide. Moreover, the enhanced Cl(-)/HCO(3)(-) exchange activity was accompanied by an increased abundance of Car2.Ae2 complexes in the parotid plasma membranes of Nhe1(-/-) mice. Anion exchanger activity was also significantly reduced in Car2-deficient mice, consistent with an important role of a putative Car2.Ae2 HCO(3)(-) transport metabolon in parotid exocrine cell function. Increased abundance of this HCO(3)(-) transport metabolon is likely one of the multiple compensatory changes in the exocrine parotid gland of Nhe1(-/-) mice that together attenuate the severity of in vivo electrolyte and acid-base balance perturbations.  相似文献   

18.
Duong C  Charron S  Deng Y  Xiao C  Ménard A  Roy J  Deng AY 《Heredity》2007,98(3):165-171
We studied three possible genotypes at 10 well-defined blood pressure (BP) QTLs using congenic rat lines. The central question was whether the hypertensive or normotensive allele is dominant, or whether there is partial dominance. The congenic strains were employed to investigate the BP effects of alleles originating from normotensive rats in the background of hypertensive Dahl salt-sensitive (DSS) rats. The normotensive alleles at eight QTLs were fully dominant over DSS alleles, which we tentatively interpreted as indicating that DSS rats incurred a loss of function at these loci and that the QTLs produced BP-reducing agents. In contrast, the normotensive allele of only one QTL was recessive over its DSS counterpart, implying a gain of function at this QTL or a null allele involved in generating a BP-elevating agent. Only one locus, C17QTL, had alleles exhibiting partial dominance. These estimates of dominance differ considerably from those obtained by QTL analysis in a F2 cross. This disagreement demonstrates the importance of establishing a cause-effect relationship between a QTL and its phenotypic effect via congenic strains. The dominance relationships suggest pertinent strategies for gene identification and pharmaceutical intervention.  相似文献   

19.
A major QTL for P uptake had previously been mapped to a 13-cM marker interval on the long arm of chromosome 12. To map that major QTL with higher precision and certainty, a secondary mapping population was developed by backcrossing a near-isogenic line containing the QTL from the donor parent to the recurrent parent of low P uptake. Two different mapping strategies have been followed in this study. A conventional QTL mapping approach was based on individual F(2) RFLP data and the phenotypic evaluation of family means in the F(3). The second strategy employed a substitution-mapping approach. Phenotypic and marker data were obtained for 160 F(3) individuals of six highly informative families that differed in the size of donor chromosomal segments in the region of the putative QTL. QTL mapping showed that close to 80% of the variation between families was due to a single QTL, hereafter referred to as Pup1 (Phosphorus uptake 1). Pup1 was placed in a 3-cM interval flanked by markers S14025 and S13126, which is within 1 cM of the position identified in the original QTL mapping experiment. Other chromosomal regions and epistatic effects were not significant. Substitution mapping revealed that Pup1 co-segregated with marker S13126 and that the flanking markers, S14025 and S13752, were outside the interval containing Pup1. The two mapping strategies therefore yielded almost identical results and, in combining the advantages of both, Pup1 could be mapped with high certainty. The QTL mapping appoach showed that the phenotypic variation between families was due to only one QTL without any additional epistacic interactions, whereas the advantage of substitution mapping was to place clearly defined borders around the QTL.  相似文献   

20.
The major QTL for submergence tolerance was locate in the 5.9 cM interval between flanking RFLP markers. To narrow down this region, a physical map was constructed using YAC and BAC clones. A 400-kb YAC was identified in this region and later its end fragments were used to screen a rice BAC library. Through chromosome walking, 24 positive BAC clones formed two contigs around linked-RFLP markers, R1164 and RZ698. Using one YAC end, six BAC ends and three RFLP markers, a fine-scale map was constructed of the 6.8-cM interval of S10709-RZ698 on rice chromosome 9. The submergence tolerance and related trait were located in a small, well-defined region around BAC-end marker 180D1R and RFLP marker R1164. The physical-to-map distance ratio in this region is as small as 172.5 kb/cM, showing that this region is a hot spot for recombination in the rice genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号