首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carmine has been used in biological staining to demonstrate selectively nuclei, chromosomes or mucins, depending on the formulation. Throughout its history in science, complaints and frustrations have been expressed about dye quality. Inconsistencies in dye quality or identity have prevented thorough understanding of staining mechanisms and have caused many stain solutions to behave unsatisfactorily. The aim of this review is to (1) detail causes of these problems, which are rooted in history, geography and production, (2) offer ways to minimize problems and (3) provide modern explanations for stain behavior. Carmine is a “semi-synthetic” dye, i.e., a complex of aluminum and the natural dye cochineal (carminic acid). Carmine shows considerable batch-to-batch variability. Geography, politics, history, agricultural practices and iconography all contribute to the variability of cochineal. In addition, widely divergent manufacturing methods are used to produce carmine. Also, confusion in terminology has led to mislabeling. Pressure from the food industry for a more satisfactory colorant for acidic foods led to the introduction of a new dye, aminocarminic acid, which could enter the biological market inadvertantly. Improved methods of analysis should help the certification process by the Biological Stain Commission. Further standardization could be achieved by replacing most of the methods of solubilizing carmine. The majority of these methods use heat, which is likely to damage the dye molecule. Fortunately, carmine is readily dissolved by raising the pH of the aqueous solvent above 12, and a new form of the dye, now available commercially, is soluble in water without the need for heat or pH adjustment. Chemical structures and physical properties of carminic acid, carmine, aminocarminic acid and kermesic acid are reviewed. A new configuration for carmine is proposed, as well as possible changes to carminic acid and carmine molecules as a result of decomposition caused by heating. Each of the major classes of carmine-based stains is described as are possible mechanisms of attachment to specific substrates. Glycogen binds carmine through hydrogen bonding, and it is here that carmine decomposed by heat could have the greatest detrimental impact. Nuclei and chromosomes are stained via coordination bonds, perhaps supplemented by hydrogen bonds. Finally, acidic mucins react ionically with carmine. Specificity in the latter case may be due to unique polymeric carmine molecules that form in the presence of aluminum chloride.  相似文献   

2.
Carmine has been used in biological staining to demonstrate selectively nuclei, chromosomes or mucins, depending on the formulation. Throughout its history in science, complaints and frustrations have been expressed about dye quality. Inconsistencies in dye quality or identity have prevented thorough understanding of staining mechanisms and have caused many stain solutions to behave unsatisfactorily. The aim of this review is to (1) detail causes of these problems, which are rooted in history, geography and production, (2) offer ways to minimize problems and (3) provide modern explanations for stain behavior. Carmine is a “semi-synthetic” dye, i.e., a complex of aluminum and the natural dye cochineal (carminic acid). Carmine shows considerable batch-to-batch variability. Geography, politics, history, agricultural practices and iconography all contribute to the variability of cochineal. In addition, widely divergent manufacturing methods are used to produce carmine. Also, confusion in terminology has led to mislabeling. Pressure from the food industry for a more satisfactory colorant for acidic foods led to the introduction of a new dye, aminocarminic acid, which could enter the biological market inadvertantly. Improved methods of analysis should help the certification process by the Biological Stain Commission. Further standardization could be achieved by replacing most of the methods of solubilizing carmine. The majority of these methods use heat, which is likely to damage the dye molecule. Fortunately, carmine is readily dissolved by raising the pH of the aqueous solvent above 12, and a new form of the dye, now available commercially, is soluble in water without the need for heat or pH adjustment. Chemical structures and physical properties of carminic acid, carmine, aminocarminic acid and kermesic acid are reviewed. A new configuration for carmine is proposed, as well as possible changes to carminic acid and carmine molecules as a result of decomposition caused by heating. Each of the major classes of carmine-based stains is described as are possible mechanisms of attachment to specific substrates. Glycogen binds carmine through hydrogen bonding, and it is here that carmine decomposed by heat could have the greatest detrimental impact. Nuclei and chromosomes are stained via coordination bonds, perhaps supplemented by hydrogen bonds. Finally, acidic mucins react ionically with carmine. Specificity in the latter case may be due to unique polymeric carmine molecules that form in the presence of aluminum chloride.  相似文献   

3.
Carmine is one of the few dyes currently certified by the Biological Stain Commission that is not assayed for dye content. Existing assay methods are complex and do not differentiate the three cochineal derivatives carmine, carminic acid and aminocarminic acid. The latter dye is relatively new to the food trade as an acid-stable red colorant and may eventually enter the biological stains market. The assay proposed here is a two-step procedure using quantitative spectrophotometric analysis at high pH (12.5–12.6) followed by a qualitative scan of a low pH (1.90–2.10) solution. Carmine is distinct at high pH, and the remaining dyes are easily distinguished at low pH. Four instances of mislabeling are documented from 18 commercial products, but the mislabeled dyes were not certified dyes. Samples from nearly all lots of carmine certified by the Biological Stain Commission from 1920 to 2004 proved to be carmine, but they varied widely in dye content. Batches from 1920 through the 1940s were significantly richer in dye content. Variability has been extreme since 2000, and most of the poorest lots have been submitted since 1990.  相似文献   

4.
Carmine is one of the few dyes currently certified by the Biological Stain Commission that is not assayed for dye content. Existing assay methods are complex and do not differentiate the three cochineal derivatives carmine, carminic acid and aminocarminic acid. The latter dye is relatively new to the food trade as an acid-stable red colorant and may eventually enter the biological stains market. The assay proposed here is a two-step procedure using quantitative spectrophotometric analysis at high pH (12.5-12.6) followed by a qualitative scan of a low pH (1.90-2.10) solution. Carmine is distinct at high pH, and the remaining dyes are easily distinguished at low pH. Four instances of mislabeling are documented from 18 commercial products, but the mislabeled dyes were not certified dyes. Samples from nearly all lots of carmine certified by the Biological Stain Commission from 1920 to 2004 proved to be carmine, but they varied widely in dye content. Batches from 1920 through the 1940s were significantly richer in dye content. Variability has been extreme since 2000, and most of the poorest lots have been submitted since 1990.  相似文献   

5.
The inhibitory effects of some saturated fatty acids on the growth of Avena coleoptile segments were attributed to the co-existence of a hydrophili  相似文献   

6.
Summary A short synthesis of 4-methylene glutamic acid was achieved. Under thermal conditions the corresponding anhydride reacted with 2,3 dimethylbutadiene to afford the corresponding DIELS-ALDER adduct in good yield. L-4-methylene glutamic acid essentially acts on glutamate metabotropic receptors and is as potent as L-Glu in producing IPs.  相似文献   

7.
Several amino acids have been synthesized as model transport substrates building on the piperidine and cyclohexane rings. Only when the distal N atom is part of an unambiguously cationic structure are these compounds transported predominantly by the cationic amino acid system. These amino acids in labeled form are excreted rather slowly in unmodified state, very little 14CO2 being released. Those which are unambiguously cationic (including also homoarginine) led to a greatly increased excretion of arginine, lysine, ornithine and citrulline. Those which might be expected to act as lysine analogs had little effect on the excretion of the basic amino acids, although the excretion of citrulline and the sum of glutamine plus asparagine was accelerated. Certain of the analogs intensified the excretion of citrulline in dissociation from effects on resorption of the basic amino acids, also in dissociation from effects on cystine resorption. These results indicate citrulline resorption does not occur principally by the same agency serving for the basic amino acids, nor by the agency serving for cystine, despite the observed interactions for resorption. The injection of either of three transport analogs for arginine into the rat leads to early increases in the circulating levels of immunologically reactive insulin and glucagon.  相似文献   

8.
Catalyzed by Rhodococcus sp. AJ270 microbial cells under very mild conditions, racemic 2,2-dimethylcyclopropanecarbonitrile (1) and its amide (2), and trans- and cis-2-methylcyclopropanecarboxamides (4) and (7) underwent enantioselective hydrolysis to give the corresponding optically active amides and acids.  相似文献   

9.
Dimer structure and liquid structure of fatty acids in the binary liquid mixture of dodecanoic (LA) and 3-phenylpropionic acids (PPA) were studied through the measurements of DSC, self-diffusion coefficient (D), density, viscosity, 13C NMR spin-lattice relaxation time, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS). The phase diagram of LA/PPA mixture exhibited a typical eutectic pattern, which means that LA and PPA are completely immiscible in solid phase. In the liquid phase of the LA/PPA mixture, D of LA always differed from that of PPA irrespective of their compositions. This exhibited that, in the liquid phase of the binary mixture of fatty acids giving a complete eutectic in the solid phase, the fatty acid dimers are composed of the same fatty acid species irrespective of their compositions. The liquid structure of the LA/PPA mixture was clarified through the SAXS and also the SANS measurements.  相似文献   

10.
The cannabinoid acids are a structurally heterogeneous group of compounds some of which are endogenous molecules and others that are metabolites of phytocannabinoids. The prototypic endogenous substance is N-arachidonoyl glycine (NAgly) that is closely related in structure to the cannabinoid agonist anandamide. The most studied phytocannabinoid is Δ9-THC-11-oic acid, the principal metabolite of Δ9-THC. Both types of acids have in common several biological actions such as low affinity for CB1 anti-inflammatory activity and analgesic properties. This suggests that there may be similarities in their mechanism of action, a point that is discussed in this review. Also presented are reports on analogs of the acids that provide opportunities for the development of novel therapeutic agents, such as ajulemic acid.  相似文献   

11.
A series of 4-hydroxybenzene acrylic acid derivatives were designed and synthesized based on the ferulic acid of natural active ingredients. The tested compound 5a, 5f and 6a have significant anti-inflammatory activity with suppression rates of 45.29%, 44.75% and 24.11%, respectively, compared with that of indomethacin, and their cardiac toxicity was not observed. The structure-function relationship shows that the p-hydroxyl group on the α-position benzene ring, particularly if acetylated, contributes to the considerable anti-inflammatory activity; that the carboxyl group on the double bond, if esterified, also contributes to the anti-inflammatory activity; that the p-methylsulfonyl group on the other benzene ring, whose introduction is due to the COX-2 selectivity, also contributes to anti-inflammatory activity surprisingly.  相似文献   

12.
This paper reviews characteristics of microsomal membrane structure; long chain fatty acids, acyl CoA derivatives, retinoids and the microsomal formation of acyl CoA derivatives and retinyl esters. It is analyzed how the movement of these molecules at the intracellular level is affected by their respective binding proteins (Fatty acid binding protein, acyl CoA binding protein and cellular retinol binding protein). Studies with model systems using these hydrophobic ligands and the lipid-binding or transfer proteins are also described. This topic is of interest especially because in the esterification of retinol the three substrates and the three binding proteins may interact. (Mol Cell Biochem20: 89–94, 1993)Abbreviations FABP(s) Fatty Acid Binding Protein(s) - CRBP Cellular Retinol Binding Protein - ACBP Acyl-CoA-Binding Protein  相似文献   

13.
Glyceraldehyde induces changes in the flux of glucose oxidised through the hexose monophosphate pathway, the concentrations of intermediates in the Embden-Meyerhoff pathway, the oxidative status of haemoglobin and levels of reduced and oxidised pyridine nucleotides and glutathione in red cells. Glyceraldehyde autoxidises in the cellular incubations, consuming oxygen and producing glyoxalase I- and II-reactive materials. Major fates of glyceraldehyde in red cells appear to be: (i) adduct formation with reduced glutathione and cellular protein; (ii) autoxidation and reaction with oxyhaemoglobin and pyridine nucleotides, and (iii) phosphorylation of d-glyceraldehyde and entry into the glycolytic pathway as glyceraldehyde 3-phosphate. The production of glycerol from glyceraldehyde by red cell l-hexonate dehydrogenase appears not to be a major reaction of glyceraldehyde in red cells. These results indicate that high concentrations of glyceraldehyde (1–50 mM) may induce oxidative stress in red cells by virtue of the spontaneous autoxidation of glyceraldehyde, forming hydrogen peroxide and α-ketoaldehydes (glyoxalase substrates). The implications of glyceraldehyde-induced oxidative stress for the in vitro anti-sickling effect of dl-glyceraldehyde and for the polyol pathway metabolism of glyceraldehyde are discussed.  相似文献   

14.
The oxazine dye Nile blue A and its fluorescent oxazone form, Nile red, were used to develop a simple and highly sensitive staining method to detect poly(3-hydroxybutyric acid) and other polyhydroxyalkanoic acids (PHAs) directly in growing bacterial colonies. In contrast to previously described methods, these dyes were directly included in the medium at concentrations of only 0.5 μg/ml, and growth of the cells occurred in the presence of the dyes. This allowed an estimation of the presence of PHAs in viable colonies at any time during the growth experiment and a powerful discrimination between PHA-negative and PHA-positive strains. The presence of Nile red or Nile blue A did not affect growth of the bacteria. This viable-colony staining method was in particular applicable to gram-negative bacteria such as Azotobacter vinelandii, Escherichia coli, Pseudomonas putida, and Ralstonia eutropha. It was less suitable for discriminating between PHA-negative and PHA-positive strains of gram-positive bacteria such as Bacillus megaterium or Rhodococcus ruber, but it could also be used to discriminate between wax-ester- and triacylglycerol-negative and -positive strains of Acinetobacter calcoaceticus or Rhodococcus opacus. The potential of this new method and its application to further investigations of PHA synthases and PHA biosynthesis pathways are discussed. Received: 12 August 1998 / Accepted: 11 November 1998  相似文献   

15.
A new method for extraction and concentration of organic dyes that uses a reagent composed of a nonionic detergent mixed with an alcohol is described. We have observed that water-soluble organic dyes are also soluble in nonionic detergents and can be extracted by adding salt, which separates the dye–detergent component from the aqueous phase. We have also found that mixing nonionic detergents with alcohols markedly reduces their viscosity and produces stable, free-flowing, and effective reagents for color extraction. On the basis of these observations, we used a mixture of Triton X-100 and 1-butanol and observed that water-soluble natural and synthetic chromophores, as well as dyes generated in biochemical reactions, can be extracted, concentrated, and analyzed spectrophotometrically. Trypan blue and phenol red are used as examples of synthetic dyes, and red wine is used as an example of phenolic plant pigments. Applications for quantification of nitric oxides and sialic acids are described in more detail and show that as little as 0.15 nmol of nitric oxide and 0.20 nmol of sialic acid can be detected. A major advantage of this method is its ability to concentrate chromophores from dye-containing solutions that otherwise cannot be measured because of their low concentrations.  相似文献   

16.
Weeds bring severe threats to agricultural production and most traditional herbicides cause serious pollution to the environment. Caffeic acid is a potential allelochemical of many crops. To develop novel herbicides, a series of trans-caffeic acid analogues were prepared to evaluate their growth inhibition on S. viridis and investigate structure-activity relationships. Presence of hydroxyl groups on the benzene ring greatly reduced the phytotoxicity of analogues and the double bond seemed not to be necessary. Moreover, it was found that halogenated cinnamic acid analogues showed potent inhibitory activity. 4-Fluorocinnamic acid (4-FCA) displayed the strongest growth inhibition in a concentration-dependent manner, whereas it induced significantly weaker inhibition on wheat. This selectivity could help us to develop a novel herbicide. Exposure of S. viridis to 4-FCA increased levels of H2O2 and catalase (CAT) in roots, suggesting that the inhibitory effect of 4-FCA might be related to oxidative stress. Thus, we have found an active lead compound for a novel herbicide derived from crop allelochemicals, which may help in the development of new environmentally safe herbicides.  相似文献   

17.
Hydrophobic photoaffinity labeling is a powerful strategy to identify hydrophobic segments within molecules, in particular membrane proteins. Here we report the design and synthesis of a novel family of fluorescent and photosensitive lipid tools, which have a common amino acid scaffold functionalized by three groups: (i) a first fatty acid chain grafted with a photoactivatable benzophenone moiety (Fatty Acid BenzoPhenone, FABP), (ii) a second fatty acid chain to ensure anchoring into a half-bilayer or hydrophobic environment, and (iii) a fluorescent carboxytetramethylrhodamine headgroup (CTMR) to detect the photolabeled compound. We present data of the synthesis and characterization of three lipid tools whose benzophenone ring is situated at various distances from the central scaffold. We could therefore establish structure/properties relationships dependent upon the depth of insertion of benzophenone into the membrane. Our lipid tools were extensively characterized both physico- and bio-chemically, and we assessed their functionality in vitro using bacterioRhodopsin (bR). We thus provide the scientific community with novel and reliable tools for the identification and study of hydrophobic regions in proteins.  相似文献   

18.
Eight Cylindropuntia species have naturalised in Australia and pose serious economic, environmental and social impacts. The host range of four additional biotypes of D. tomentosus from southern USA was investigated. Feeding and development were restricted to the genus Cylindropuntia. However, they showed differences in specificity within this genus and some biotypes discriminated between the provenances of Cylindropuntia rosea and Cylindropuntia tunicata. Efficacy trials were conducted to determine whether populations of each biotype could be sustained on the naturalised Cylindropuntia species and if these populations could retard the growth or kill these plants. The ‘acanthocarpa’ biotype offers potential control of C. rosea (Lorne Station), while the ‘cylindropuntia sp.’ biotype shows great potential to control C. rosea (Grawin). The ‘cylindropuntia sp.’ biotype also had a high impact on Cylindropuntia kleiniae and Cylindropuntia imbricata, and a moderate impact on Cylindropuntia leptocaulis and Cylindropuntia prolifera. The ‘acanthocarpa?×?echinocarpa’ biotype had its greatest impact on C. tunicata (Grawin), killing this plant in 18 weeks. A fourth biotype, ‘leptocaulis’, was damaging to some species, but was less effective than the other biotypes. Cylindropuntia spinosior is the only naturalised species in Australia where no effective biocontrol agent has been found.  相似文献   

19.
All-trans-retinoic acid (all-trans-RA) and 13-cis-retinoic acid (13-cis-RA), due to their effects on cell differentiation, proliferation and angiogenesis, improved treatment results in some malignancies. Pharmacokinetic studies of all-trans-RA and 13-cis-RA along with monitoring of retinoic acid metabolites may help to optimize retinoic acid therapy and to develop new effective strategies for the use of retinoic acids in cancer treatment. Therefore, we developed a HPLC method for the simultaneous determination in human plasma of the physiologically important retinoic acid isomers, all-trans-, 13-cis- and 9-cis-retinoic acid, their 4-oxo metabolites, 13-cis-4-oxoretinoic acid (13-cis-4-oxo-RA) and all-trans-4-oxoretinoic acid (all-trans-4-oxo-RA), and vitamin A (all-trans-retinol). Analysis performed on a silica gel column with UV detection at 350 nm using a binary multistep gradient composed on n-hexane, 2-propanolol and glacial acetic acid. For liquid-liquid extraction a mixture of n-hexane, dichloromethane and 2-propanolol was used. The limits of detection were 0.5 ng/ml for retinoic acids and 10 ng/ml for all-trans-retinol. The method showed good reproducibility for all components (within-day C.V.: 3.02–11.70%; day-to-day C.V.: 0.01–11.34%. Furthermore, 9-cis-4-oxoretinoic acid (9-cis-4-oxo-RA) is separated from all-trans-4-oxo-RA and 13-cis-4-oxo-RA. In case of clinical use of 9-cis-retinoic acid (9-cis-RA) the pharmacokinetics and metabolism of this retinoic acid isomer can also be examined.  相似文献   

20.
Curcumin is a natural compound derived from turmeric and can target malignant tumor molecules involved in cancer propagation. It has potent antioxidant activity, but its effectiveness is limited due to poor absorption and rapid elimination from the body. Various curcumin derivatives have also shown anticancer potential in in-vitro and in-vivo models. Curcumin can target multiple signaling pathways involved in cancer development/progression or induce cancer cell death through apoptosis. In addition, curcumin and its derivatives could also enhance the effectiveness of conventional chemotherapy, radiation therapy and reduce their associated side effects. Lately, nanoparticle-based delivery systems are being developed/explored to overcome the challenges associated with curcumin's delivery, increasing its overall efficacy. The use of an imaging system to track these formulations could also give beneficial information about the bioavailability and distribution of the nano-curcumin complex. In conclusion, curcumin holds significant promise in the fight against cancer, especially in its nanoform, and could provide precise delivery to cancer cells without affecting normal healthy cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号