首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neuronal mitochondrial dynamics are disturbed after ischemic stroke. Optic atrophy 1 (OPA1) and its GTPase activity are involved in maintaining mitochondrial cristae and inner membrane fusion. This study aimed to explore the role of OMA1-mediated OPA1 cleavage (S1-OPA1) in neurons exposed to cerebral ischemia and reperfusion. After oxygen-glucose deprivation (OGD) for 60 min, we found that mitochondrial fragmentation occurred successively in the axon and soma of neurons, accompanied by an increase in S1-OPA1. In addition, S1-OPA1 overexpression significantly aggravated mitochondrial damage in neurons exposed to OGD for 60 min and 24 h after OGD/R, characterized by mitochondrial fragmentation, decreased mitochondrial membrane potential, mitochondrial cristae ultrastructural damage, increased superoxide production, decreased ATP production and increased mitochondrial apoptosis, which was inhibited by the lysine 301 to alanine mutation (K301A). Furthermore, we performed neuron-specific overexpression of S1-OPA1 in the cerebral cortex around ischemia of middle cerebral artery occlusion/reperfusion (MCAO/R) mice. The results further demonstrated in vivo that S1-OPA1 exacerbated neuronal mitochondrial ultrastructural destruction and injury induced by cerebral ischemia-reperfusion, while S1-OPA1-K301 overexpression had no effect. In conclusion, ischemia induced neuronal OMA1-mediated cleavage of OPA1 at the S1 site. S1-OPA1 aggravated neuronal mitochondrial fragmentation and damage in a GTPase-dependent manner, and participated in neuronal ischemia-reperfusion injury.Subject terms: Stroke, Cell death in the nervous system  相似文献   

2.
Mitochondrial fusion is linked to heart and liver ischemia-reperfusion (IR) insult. Unfortunately, there is no report to elucidate the detailed influence of mitochondrial fusion in renal IR injury. This study principally investigated the mechanism by which mitochondrial fusion protected kidney against IR injury. Our results indicated that sirtuin 3 (Sirt3) was inhibited after renal IR injury in vivo and in vitro. Overexpression of Sirt3 improved kidney function, modulated oxidative injury, repressed inflammatory damage, and reduced tubular epithelial cell apoptosis. The molecular investigation found that Sirt3 overexpression attenuated IR-induced mitochondrial damage in renal tubular epithelial cells, as evidenced by decreased reactive oxygen species production, increased antioxidants sustained mitochondrial membrane potential, and inactivated mitochondria-initiated death signaling. In addition, our information also illuminated that Sirt3 maintained mitochondrial homeostasis against IR injury by enhancing optic atrophy 1 (OPA1)-triggered fusion of mitochondrion. Inhibition of OPA1-induced fusion repressed Sirt3 overexpression-induced kidney protection, leading to mitochondrial dysfunction. Further, our study illustrated that OPA1-induced fusion could be affected through ERK; inhibition of ERK abolished the regulatory impacts of Sirt3 on OPA1 expression and mitochondrial fusion, leading to mitochondrial damage and tubular epithelial cell apoptosis. Altogether, our results suggest that renal IR injury is closely associated with Sirt3 downregulation and mitochondrial fusion inhibition. Regaining Sirt3 and/or activating mitochondrial fission by modifying the ERK-OPA1 cascade may represent new therapeutic modalities for renal IR injury.  相似文献   

3.
Impaired mitochondrial function and dysregulated energy metabolism have been shown to be involved in the pathological progression of kidney diseases such as acute kidney injury (AKI) and diabetic nephropathy. Hence, improving mitochondrial function is a promising strategy for treating renal dysfunction. NADH: ubiquinone oxidoreductase core subunit V1 (NDUFV1) is an important subunit of mitochondrial complex I. In the present study, we found that NDUFV1 was reduced in kidneys of renal ischemia/reperfusion (I/R) mice. Meanwhile, renal I/R induced kidney dysfunction as evidenced by increases in BUN and serum creatinine, severe injury of proximal renal tubules, oxidative stress, and cell apoptosis. All these detrimental outcomes were attenuated by increased expression of NDUFV1 in kidneys. Moreover, knockdown of Ndufv1 aggravated cell insults induced by H2O2 in TCMK-1 cells, which further confirmed the renoprotective roles of NDUFV1. Mechanistically, NDUFV1 improved the integrity and function of mitochondria, leading to reduced oxidative stress and cell apoptosis. Overall, our data indicate that NDUFV1 has an ability to maintain mitochondrial homeostasis in AKI, suggesting therapies by targeting mitochondria are useful approaches for dealing with mitochondrial dysfunction associated renal diseases such as AKI.  相似文献   

4.
Previous studies have demonstrated dysregulated mitochondrial dynamics in fibrotic livers and hepatocytes. Little is currently known about how mitochondrial dynamics are involved, nor is it clear how mitochondrial dynamics participate in hepatic stellate cell (HSC) activation. In the present study, we investigated the role of mitochondrial dynamics in HSC activation and the underlying mechanisms. We verified that mitochondrial fission was enhanced in human and mouse fibrotic livers and active HSCs. Moreover, increased mitochondrial fission driven by fis1 overexpression could promote HSC activation. Inhibiting mitochondrial fission using mitochondrial fission inhibitor-1 (Mdivi-1) could inhibit activation and induce apoptosis of active HSCs, indicating that increased mitochondrial fission is essential for HSC activation. Mdivi-1 treatment also induced apoptosis in active HSCs in vivo and thus ameliorated CCl4-induced liver fibrosis. We also found that oxidative phosphorylation (OxPhos) was increased in active HSCs, and OxPhos inhibitors inhibited activation and induced apoptosis in active HSCs. Moreover, increasing mitochondrial fission upregulated OxPhos, while inhibiting mitochondrial fission downregulated OxPhos, suggesting that mitochondrial fission stimulates OxPhos during HSC activation. Next, we found that inhibition of oxidative stress using mitoquinone mesylate (mitoQ) and Tempol inhibited mitochondrial fission and OxPhos and induced apoptosis in active HSCs, suggesting that oxidative stress contributes to excessive mitochondrial fission during HSC activation. In conclusion, our study revealed that oxidative stress contributes to enhanced mitochondrial fission, which triggers OxPhos during HSC activation. Importantly, inhibiting mitochondrial fission has huge prospects for alleviating liver fibrosis by eliminating active HSCs.Subject terms: Endocrine system and metabolic diseases, Cell biology  相似文献   

5.
6.
Damaged or dysfunctional mitochondria are toxic to the cell by producing reactive oxygen species and releasing cell death factors. Therefore, timely removal of these organelles is critical to cellular homeostasis and viability. Mitophagy is the mechanism of selective degradation of mitochondria via autophagy. The significance of mitophagy in kidney diseases, including ischemic acute kidney injury (AKI), has yet to be established, and the involved pathway of mitophagy remains poorly understood. Here, we show that mitophagy is induced in renal proximal tubular cells in both in vitro and in vivo models of ischemic AKI. Mitophagy under these conditions is abrogated by Pink1 and Park2 deficiency, supporting a critical role of the PINK1-PARK2 pathway in tubular cell mitophagy. Moreover, ischemic AKI is aggravated in pink1 andpark2 single- as well as double-knockout mice. Mechanistically, Pink1 and Park2 deficiency enhances mitochondrial damage, reactive oxygen species production, and inflammatory response. Taken together, these results indicate that PINK1-PARK2-mediated mitophagy plays an important role in mitochondrial quality control, tubular cell survival, and renal function during AKI.  相似文献   

7.
8.
9.
To investigate the role of oxidative stress and/or mitochondrial impairment in the occurrence of acute kidney injury (AKI) during sepsis, we developed a sepsis-induced in vitro model using proximal tubular epithelial cells exposed to a bacterial endotoxin (lipopolysaccharide, LPS). This investigation has provided key features on the relationship between oxidative stress and mitochondrial respiratory chain activity defects.  相似文献   

10.
Oxidative stress and apoptosis play key role in the pathogenesis of acute kidney injury (AKI). We hypothesize that Astragaloside IV(AS-IV) prevents AKI through inhibiting oxidative stress and apoptosis. The rats were divided into sham control, saline-,vehicle-, or AS-IV-treated groups. AS-IV (20 mg/kg) was orally administered once daily to the rats for 7 consecutive days before terminating the experiments. In ischemia-induced AKI model, experimental rats were subjected to bilateral clamping of the renal arteries for 45 min, followed by reperfusion for 24 h. In contrast-induced AKI model, iopamidol (2.9 g iodine/kg) was administered intravenously into the rats. Renal function, histopathology, oxidative stress and apoptosis were evaluated in these models. Pretreatment with AS-IV significantly decreased blood urea nitrogen, serum creatinine, cystatin C and neutrophil gelatinase-associated lipocalin levels, as well as urinary kidney injury molecule-1 level and tubular injury. AS-IV also reduced oxidative stress and tubular cell apoptosis. The p38 mitogen-activated protein kinase phosphorylation and caspase-3 activity were elevated in kidney tissues from AKI rats, accompanied by an increase in Bax expression and a decrease in Bcl-2 expression at mRNA and protein levels. These changes were prevented by AS-IV pretreatment. Therefore, AS-IV can be developed as a novel therapeutic approach to prevent AKI through targeting inhibition of oxidative stress and apoptosis pathways.  相似文献   

11.
Bcl‐2 family proteins are critical for the regulation of apoptosis, with the pro‐apoptotic members Bax essential for the release of cytochrome c from mitochondria in many instances. However, we found that Bax was activated after mitochondrial depolarization and the completion of cytochrome c release induced by photodynamic therapy (PDT) with the photosensitizer Photofrin in human lung adenocarcinoma cells (ASTC‐a‐1). Besides, knockdown of Bax expression by gene silencing had no effect on mitochondrial depolarization and cytochrome c release, indicating that Bax makes no contribution to mitochondrial outer membrane permeabilization (MOMP) following PDT. Further study revealed that Bax knockdown only slowed down the speed of cell death induced by PDT, indicating that Bax is not essential for PDT‐induced apoptosis. The fact that Bax knockdown totally inhibited the mitochondrial accumulation of dynamin‐related protein (Drp1) and Drp1 knockdown attenuated cell apoptosis suggest that Bax can promote PDT‐induced apoptosis through promoting Drp1 activation. Besides, Drp1 knockdown also failed to inhibit PDT‐induced cell death finally, indicating that Bax‐mediated Drp1's mitochondrial translocation is not essential for PDT‐induced cell apoptosis. On the other hand, we found that protein kinase Cδ (PKCδ), Bim L and glycogen synthase kinase 3β (GSK3β) were activated upon PDT treatment and might contribute to the activation of Bax under the condition. Taken together, Bax activation is not essential for MOMP but essential for Drp1‐mediated mitochondrial fission during the apoptosis caused by Photofrin‐PDT. J. Cell. Physiol. 226: 530–541, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Objective: To explore the impact of oxidative insults on mitochondrial dynamics. In mammalian cells, oxidative insults activate stress response pathways including inflammation, cytokine secretion, and apoptosis. Intriguingly, mitochondria are emerging as a sensitive network that may function as an early indicator of subsequent cellular stress responses. Mitochondria form a dynamic network, balancing fusion, mediated by optic atrophy-1 (OPA1), and fission events, mediated by dynamin-related protein-1 (DRP1), to maintain homeostasis.

Methods: Here, we examine the impact of oxidative insults on mitochondrial dynamics in 143B osteosarcoma and H9c2 cardiomyoblast cell lines via confocal microscopy, flow cytometry, and protein-based analyses.

Results: When challenged with hydrogen peroxide (H2O2), a ROS donor, both cell lines display fragmentation of the mitochondrial network and loss of fusion-active OPA1 isoforms, indicating that OPA1-mediated mitochondrial fusion is disrupted by oxidative damage in mammalian cells. Consistent with this, cells lacking OMA1, a key protease responsible for cleavage of OPA1, are protected against OPA1 cleavage and mitochondrial fragmentation in response to H2O2 challenge.

Discussion: Taken together, these findings indicate that oxidative insults damage OPA1-mediated mitochondrial dynamics in mammalian cells via activation of OMA1, consistent with an emerging role for mitochondrial dynamics as an early indicator of cellular stress signaling.  相似文献   


13.
BackgroundSeptic acute kidney injury (AKI) is associated with increased morbidity and mortality in critically ill patients. MicroRNA is reportedly involved in sepsis-induced organ dysfunction, while the role of miR-150 in septic AKI remains ambiguous.MethodsQuantitative real-time PCR (qRT-PCR) was carried out to examine miR-150-5p expression in both septic AKI patients and volunteers without septic AKI. Lipopolysaccharide (LPS) was used to treat renal tubular epithelial cell line HK-2 and C57/BL6 mice to establish in vitro and in vivo sepsis-induced AKI models. Cell apoptosis was determined using TdT-mediated dUTP nick end labeling (TUNEL) staining and flow cytometry. Cell viability was tested using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Renal pathological changes were examined via Hematoxylin-Eosin (H&E) staining, and renal function was measured via blood urea nitrogen (BUN) and creatinine (Cre) measurements. The MEKK3/JNK profile and oxidative stress markers (including COX2 and iNOS) were examined by immunoblot analysis, and the expression levels of inflammatory cytokines (TNF-α, IL-6, and IL-1β) and oxidative stress markers (MDA, SOD, and CAT) were evaluated by ELISA.ResultsMiR-150-5p was down-regulated in the serum of patients with septic AKI (compared to healthy volunteers). Moreover, miR-150-5p levels were lower in LPS-treated HK-2 cell lines and in the septic AKI mouse model. Additionally, Stat-3 activation mediated the decrease of miR-150-5p. Functionally, miR-150-5p agomir attenuated LPS-induced apoptosis in HK-2 cells, in addition to renal inflammatory responses and oxidative stress. In contrast, inhibition of miR-150-5p aggravated LPS-induced apoptosis, inflammatory reactions and oxidative stress. Furthermore, miR-150-5p agomir decreased BUN and Scr levels in the septic AKI mice model repressed TNF-α, IL-6 and IL-1β, and up-regulated SOD and CAT down-regulated MDA in the kidney tissues. Moreover, miR-150-5p was identified as a target gene for Stat3, and the overexpression of Stat3 partially promoted the effect of down-regulating miR-150-5p on LPS-induced HK2 cell injury. Mechanistically, the MEKK3/JNK pathway was identified as a functional target of miR-150-5p, and the knockdown of MEKK3 showed protective effects against LPS mediated HK-2 cell apoptosis.ConclusionStat3-mediated miR-150-5p exerted protective effects in sepsis-induced acute kidney injury by regulating the MEKK3/JNK pathway.  相似文献   

14.
15.
Cadmium (Cd) is a known nephrotoxic element. In this study, the primary cultures of rat proximal tubular (rPT) cells were treated with low doses of cadmium acetate (2.5 and 5 μM) to investigate its cytotoxic mechanism. A progressive loss in cell viability, together with a significant increase in the number of apoptotic and necrotic cells, were seen in the experiment. Simultaneously, elevation of intracellular [Ca2+]i and reactive oxygen species (ROS) levels, significant depletion of mitochondrial membrane potential(Δ Ψ) and cellular glutathione (GSH), intracellular acidification, and inhibition of Na+, K+-ATPase and Ca2+-ATPase activities were revealed in a dose-dependent manner during the exposure, while the cellular death and the apoptosis could be markedly reversed by N-acetyl-l-cysteine (NAC). Also, the calcium overload and GSH depletion were significantly affected by NAC. In conclusion, exposure of rPT cells to low-dose cadmium led to cellular death, mediated by an apoptotic and a necrotic mechanism. The apoptotic death might be the chief mechanism, which may be mediated by oxidative stress. Also, a disorder of intracellular homeostasis induced by oxidative stress and mitochondrial dysfunction is a trigger of apoptosis in rPT cells.  相似文献   

16.
Pathogenesis of cardiac microvascular ischemia-reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F-actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F-actin-mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F-actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.  相似文献   

17.
BackgroundCisplatin-induced acute kidney injury (AKI) is a severe clinical complication with no satisfactory therapies in the clinic. Tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1) plays a vital role in both inflammation and metabolism. However, the TRAF1 effect in cisplatin induced AKI needs to be evaluated.MethodsWe observed the role of TRAF1 in eight-week-old male mice and mouse proximal tubular cells both treated with cisplatin by examining the indicators associated with kidney injury, apoptosis, inflammation, and metabolism.ResultsTRAF1 expression was decreased in cisplatin-treated mice and mouse proximal tubular cells (mPTCs), suggesting a potential role of TRAF1 in cisplatin-associated kidney injury. TRAF1 overexpression significantly alleviated cisplatin-triggered AKI and renal tubular injury, as demonstrated by reduced serum creatinine (Scr) and urea nitrogen (BUN) levels, as well as the ameliorated histological damage and inhibited upregulation of NGAL and KIM-1. Moreover, the NF-κB activation and inflammatory cytokine production enhanced by cisplatin were significantly blunted by TRAF1. Meanwhile, the increased number of apoptotic cells and enhanced expression of BAX and cleaved Caspase-3 were markedly decreased by TRAF1 overexpression both in vivo and vitro. Additionally, a significant correction of the metabolic disturbance, including perturbations in energy generation and lipid and amino acid metabolism, was observed in the cisplatin-treated mice kidneys.ConclusionTRAF1 overexpression obviously attenuated cisplatin-induced nephrotoxicity, possibly by correcting the impaired metabolism, inhibiting inflammation, and blocking apoptosis in renal tubular cells.General significanceThese observations emphasize the novel mechanisms associated to metabolism and inflammation of TRAF1 in cisplatin-induced kidney injury.  相似文献   

18.

Background

The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between vascular endothelial cell dysfunction, inflammation, and tubular cell damage. Several lines of evidence suggest a potential anti-inflammatory effect of vitamin D in various kidney injury models. In this study, we investigated the effect of paricalcitol, a synthetic vitamin D analog, on renal inflammation in a mouse model of ischemia/reperfusion (I/R) induced acute kidney injury (AKI).

Methods

Paricalcitol was administered via intraperitoneal (IP) injection at 24 h before ischemia, and then I/R was performed through bilateral clamping of the renal pedicles. Twenty-four hours after I/R, mice were sacrificed for the evaluation of injury and inflammation. Additionally, an in vitro experiment using HK-2 cells was also performed to examine the direct effect of paricalcitol on tubular cells.

Results

Pre-treatment with paricalcitol attenuated functional deterioration and histological damage in I/R induced AKI, and significantly decreased tissue neutrophil and macrophage infiltration and the levels of chemokines, the pro-inflammatory cytokine interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). It also decreased IR-induced upregulation of Toll-like receptor 4 (TLR4), and nuclear translocation of p65 subunit of NF-κB. Results from the in vitro study showed pre-treatment with paricalcitol suppressed the TNF-α-induced depletion of cytosolic IκB in HK-2 cells.

Conclusion

These results demonstrate that pre-treatment with paricalcitol has a renoprotective effect in ischemic AKI, possibly by suppressing TLR4-NF-κB mediated inflammation.  相似文献   

19.
Ischemia/reperfusion (I/R) is the most common cause of acute renal injury. I/R-induced reactive oxygen species (ROS) are thought to be a major factor in the development of acute renal injury by promoting the initial tubular damage. NAD(P)H:quinone oxidoreductase 1 (NQO1) is a well-known antioxidant protein that regulates ROS generation. The purpose of this study was to investigate whether NQO1 modulates the renal I/R injury (IRI) associated with NADPH oxidase (NOX)-derived ROS production in an animal model. We analyzed renal function, oxidative stress, and tubular apoptosis after IRI. NQO1−/− mice showed increased blood urea nitrogen and creatinine levels, tubular damage, oxidative stress, and apoptosis. In the kidneys of NQO1−/− mice, the cellular NADPH/NADP+ ratio was significantly higher and NOX activity was markedly higher than in those of NQO1+/+ mice. The activation of NQO1 by β-lapachone (βL) significantly improved renal dysfunction and reduced tubular cell damage, oxidative stress, and apoptosis by renal I/R. Moreover, the βL treatment significantly lowered the cellular NADPH/NADP+ ratio and dramatically reduced NOX activity in the kidneys after IRI. From these results, it was concluded that NQO1 has a protective role against renal injury induced by I/R and that this effect appears to be mediated by decreased NOX activity via cellular NADPH/NADP+ modulation. These results provide convincing evidence that NQO1 activation might be beneficial for ameliorating renal injury induced by I/R.  相似文献   

20.

Background

Mitochondrial homeostasis has been increasingly viewed as a potential target of cancer therapy, and mitochondrial fission is a novel regulator of mitochondrial function and apoptosis. The aim of our study was to determine the detailed role of mitochondrial fission in SW837 colorectal cancer cell viability, mobility and proliferation. In addition, the current study also investigated the therapeutic impact of Tanshinone IIA (Tan IIA), a type of anticancer adjuvant drug, on cancer mitochondrial homeostasis.

Results

The results of our data illustrated that Tan IIA promoted SW837 cell death, impaired cell migration and mediated cancer proliferation arrest in a dose-dependent manner. Functional investigation exhibited that Tan IIA treatment evoked mitochondrial injury, as witnessed by mitochondrial ROS overproduction, mitochondrial potential collapse, antioxidant factor downregulation, mitochondrial pro-apoptotic protein upregulation, and caspase-9-dependent apoptotic pathway activation. Furthermore, we confirmed that Tan IIA mediated mitochondrial damage by activating mitochondrial fission, and the inhibition of mitochondrial fission abrogated the proapoptotic effects of Tan IIA on SW837 cells. To this end, our results demonstrated that Tan IIA modulated mitochondrial fission via the JNK-Mff pathways. The blockade of the JNK-Mff axis inhibited Tan IIA-mediated mitochondrial fission and promoted the survival of SW837 cells.

Conclusions

Altogether, our results identified mitochondrial fission as a new potential target to control cancer viability, mobility and proliferation. Furthermore, our findings demonstrate that Tan IIA is an effective drug to treat colorectal cancer by activating JNK-Mff-mitochondrial fission pathways.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号