首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细胞是生命活动的最基本单位.膜性细胞器是真核细胞内以膜为屏障维持特定形态及特化功能的亚细胞结构,包括细胞核、内质网、高尔基体、溶酶体、线粒体、叶绿体、过氧化物酶体、内吞体等.经典细胞器研究始于形态学观察和单个基因及其编码蛋白质的研究,盛于基因互作图谱和蛋白质互作网络的解析,一直是生命科学领域中最受关注的研究前沿和热点之...  相似文献   

2.
真核细胞中内质网是由片状和管状两种不同形态组成的连续的生物膜结构,参与细胞内蛋白质和脂质的合成以及钙离子稳态的调控等。内质网通过蛋白-蛋白及蛋白-脂质的相互作用与多种膜性细胞结构建立膜接触位点,进行物质的交换、信号转导、膜动态性调控等生理活动。内质网与膜性细胞结构互作的缺陷也会引发许多人类重大疾病。该文介绍了内质网与一系列膜性细胞结构接触位点形成的分子机制及其潜在功能。  相似文献   

3.
公认食品安全的酿酒酵母(Saccharomyces cerevisiae)是合成生物学中被广泛研究的底盘细胞,常作为生产高值或大宗化学品的微生物细胞工厂。近年来,通过各种代谢工程改造策略,已有大量化学品的合成途径在酿酒酵母中建立并优化,且部分化学品具备了产业化价值。作为真核生物,酿酒酵母具有完整的细胞内膜系统及其组成的复杂细胞器区室,而这些细胞器区室往往含有某些化学品合成所必需的较高浓度前体底物(如线粒体中的乙酰辅酶A),或更加充足的酶、辅因子、能量等,可为目标产物的生物合成提供更适宜的物理、化学环境,但同时不同细胞器的结构特点有时也成为特定化合物合成的障碍。为此,研究人员在深入分析不同细胞器自身特点的基础上,结合目标化学品合成途径与细胞器之间的适配度,对细胞器开展了大量针对性改造工作以提高产物合成效率。本文详细综述了酿酒酵母中线粒体、过氧化物酶体、高尔基体、内质网、脂滴和液泡等细胞器的途径改造及优化策略,以及利用细胞器区室化合成化学品的研究进展,并对目前存在的困难和挑战以及未来研究方向进行了总结与展望。  相似文献   

4.
细胞器通过接触及分工协作以实现彼此间的物质交换和信息交流。脂滴是细胞内中性脂的主要贮存场所,但其功能却远不止于此;它还能与内质网、线粒体、溶酶体、细胞核等多种细胞器发生相互作用,共同完成包括脂代谢、膜转运以及信号转导等一系列生理功能的调控。该文整理并归纳了脂滴与胞内细胞器间的接触及动态互作的最新研究进展。对脂滴与胞内细胞器间互作机制及功能的研究不仅拓宽了对脂滴生物学的认知,也有助于进一步理解代谢性疾病的相关发病机制。  相似文献   

5.
真核细胞通过区隔化形成各种细胞器,这些膜状结构和细胞质膜共同构成了复杂的生物膜系统。细胞质膜和细胞器之间以及细胞器之间大量的物质和信息交流构成了细胞生命活动的基础。由马达蛋白驱动的囊泡运输是细胞内物质运输的主要形式,囊泡运输的调控机制是细胞生物学领域的重大科学问题。该文重点总结了近年来基于微管轨道的囊泡运输领域中关于马达蛋白kinesin和cytoplasmic dynein的货物识别机制、货物卸载机制的研究进展,并对马达蛋白对于微管轨道的识别机制进行了初步探讨。此外,该文还总结了囊泡运输与人类疾病之间的关系。  相似文献   

6.
由原生质组成细胞器的四大系统,及其主要成分的形态结构和功能简表:原生质细胞器系统细胞器主要成份形态结构主要功能备注糖蛋白塘蛋白是以不均一的低聚糖为辅基的结合蛋白质蛾被蛋白质、脂类、箱类蛋白质、脂类、RNA、DNA双层脂类镶嵌着蛋白质的动态结构,呈电镜“单位膜”三层图象由两层单位膜组成。内外膜有时相连形成核孔细胞表面的保护与月滑;表面受体和疑面识别;胞间联结的分子基础物质的运输;膜受体;代谢的调节与调控;细胞识别、运动与固定质膜核被膜蛋白质、脂类、叶绿素、DNA、核蛋白体周围由两层单位膜组成。在膜内基质中分布…  相似文献   

7.
本文简要介绍了包被小泡的结构和功能。包被小泡是由笼形蛋白三联体骨架组成的多边形网格内含一个膜泡所构成,它参与细胞受体介导的内吞作用、质膜循环、细胞外吞作用和病毒进入细胞等过程,是一种新的细胞器。  相似文献   

8.
原生动物是真核单细胞动物。它们有与多细胞动物细胞相似的细胞器(cel1 organs)。但由于原生动物细胞适应长久的独立生活,在细胞范围内走过漫长的进化道路,因而发展出了一些在其它细胞中少见或没有的细胞器,名细胞小器(organelles)。本文除简要说明原生动物前一类细胞器的特点外,主要介绍后一类细胞器。原生动物和多细胞的动物的细胞一样,都具有细胞的界膜、膜内的细胞质和中部的细胞核三个主要部分。但为适应保护、支持及运动等需要,其细胞的界膜多非简单的一层单位膜。除变形虫类只具简单的质膜外,多数原生  相似文献   

9.
前言     
<正>在这个飞速发展的科学时代,细胞生物学一直是生命科学领域的重要研究方向。细胞器作为构成细胞的基本功能单位之一,其结构和功能的深入研究对于理解生命的奥秘至关重要。因此,我们很高兴地为您呈现这期“细胞器”专刊。本期专刊致力于深入探讨细胞器的多样性,结构与功能的关系,以及细胞器在细胞内环境平衡维持和生物学过程中所扮演的关键角色。我们所熟知的传统细胞器均由国外科学家发现,伴随着近年来细胞生物学技术的高速更迭发展,中国学者不断发现新型细胞器,其中包括迁移体和细胞蛇。我们邀请迁移体的发现者俞立教授和其学生(黄雨薇和姜东)以及细胞蛇的发现者刘冀珑教授总结和分享了他们在各自领域的最新研究成果。  相似文献   

10.
细胞器与细胞凋亡   总被引:3,自引:0,他引:3  
闫玲  苗琦 《生物物理学报》2002,18(3):271-276
细胞凋亡是由基因控制的有序生理过程,细胞内各组分在这一过程中相互协调,组成了精细的调控系统。除细胞核外,线粒体是近年发现与凋亡密切相关的细胞器,它经多种因子诱发可以释放细胞色素c等因子参与到凋亡途径中。进一步的研究发现,在一定条件下,内质网、溶酶体等也与凋亡活动有关。这些细胞器在细胞凋亡中的作用及其机制是目前的研究热点。  相似文献   

11.
相分离是细胞内无膜细胞器动态组装的主要驱动力,参与多种生物学过程,成为近年来生命科学领域的研究热点。已有研究发现两类非编码RNA(non-coding RNA, ncRNA)与相分离密切相关,其中微小RNA(microRNA, miRNA)的加工受相分离的调节,并通过相分离诱导基因沉默。另一类长链非编码RNA(long non-coding RNA, lncRNA)可作为相分离行为的支架参与无膜细胞器形成、DNA损伤修复、胚层分化等生物学过程。本文综述了miRNA和lncRNA与相分离的关系,为重新审视细胞内ncRNA和相分离的组织模式和功能调控提供新的观点和研究思路。  相似文献   

12.
随着合成生物学的兴起,历史悠久的生物固氮研究领域迎来了新的发展机遇。合成生物学的原理和技术引入固氮生物学以后,诞生了固氮合成生物学的新兴交叉学科。共生固氮是生物固氮三种形式中效率最高的一种。在共生固氮体系中,固氮细菌以细胞器的面目出现在宿主植物细胞质中,利用微氧和物质能量充足的有利条件,进行较为稳定长久的固氮反应。但是,共生固氮作用的局限性在于宿主专一性,即共生固氮细菌难以在绝大多数经济作物上完成侵染和固氮作用。因此,固氮合成生物学面临的一个重要挑战是如何突破固氮细菌的宿主专一性,实现主要经济作物共生或者自主固氮。为了解决这一难题,国内外的研究者通过艰难地探索取得了良好的研究进展。本文将就固氮合成生物学的一些主要进展和面临的问题作一简要综述。  相似文献   

13.
迁移体(migrasome)是俞立教授于2015年报道的新细胞器。迁移体是细胞迁移过程中尾部产生的收缩丝的尖端或交叉点产生出的膜性细胞器。细胞产生迁移体的过程称为迁移性胞吐(migracytosis),介导细胞内物质的释放和细胞间远距离通讯,在斑马鱼胚胎发育及器官形成中具有重要作用。本篇综述总结了目前有关迁移体的研究进展,包括早期迁移体的发现过程,TSPAN4和胆固醇形成的宏结构域,整合素(integrin)与细胞外基质的相互作用以及特异性是迁移体发生的核心分子机制、迁移体研究的第一个活体动物模型以及迁移体具有和潜在的生理意义、血清中迁移体的研究。本篇综述还归纳了当前建立的迁移体研究方法和工具,包括迁移体纯化的方法、迁移体的鉴定方法、迁移体的分子标志物、迁移体的染料标记方法和抑制迁移体发生的小分子抑制剂等相关研究进展,为迁移体领域的研究奠定工具基础和树立标准。本综述还对迁移体这个新兴领域中的重要问题和研究方向进行展望,期待更多其他领域的科学家投入迁移体领域的研究中。  相似文献   

14.
真核细胞内多种无膜及有膜细胞器为各种生物学过程的发生提供场所.被膜细胞器通过它们之间的膜接触位点所进行的信息交流和物质交换是维持生命活动所必需的.绘制活细胞中细胞器或膜接触位点等处的蛋白质组图谱,将有助于解析这些部位的生物学功能及作用机制,并为研究细胞器相互作用提供基础.但由于无膜细胞器或膜接触位点很难分离纯化,传统的生化方法难以系统解析其中的蛋白质组.最近报道的几种基于酶类的蛋白质邻近标记技术,则为系统分析上述空间受限的蛋白质组这一难题提供了有效的解决方案.通过将能催化产生活性自由基(最常见的是生物素及其衍生物的自由基)的酶连接到目标蛋白上,可对其邻近的蛋白质组进行共价标记,从而使后者的分离和鉴定成为可能,并可以运用于活细胞中的动态标记.我们在此综述了几种最新的邻近标记策略的原理及应用,并对它们的优势与局限性进行了比较,以期为细胞器互作的蛋白质组学研究提供参考.  相似文献   

15.
所有真核细胞都含有一套由多种细胞器组成的内膜系统,包括内质网(endoplasmic reticulum, ER)、高尔基体(Golgi)、反式高尔基体网络(trans-Golgi network, TGN)、液泡前体/多囊泡体(prevacuolar compartment or multivesicular body, PVC/MVB)和液泡(vacuole)或溶酶体(lysosome).这些细胞器在有序调控下被准确和高效地生成,参与细胞内物质运输,在生物个体的生长发育和对环境应答中发挥着重要作用.自2000年以来,我国学者在植物内膜系统细胞器的生物发生及功能方向开展了深入研究并取得了重大进展.本文首先概述了我国学者在植物蛋白运输领域中的代表性研究成果.随后以液泡前体/多囊泡体为例,重点介绍了其鉴定及由其介导的植物液泡蛋白转运,接着详细阐述了由内体蛋白分选转运装置(endosomal sorting complexes required for transport, ESCRT)介导的多囊泡体生物发生的分子机制,并着重介绍了植物特异的ESCRT组分FREE1蛋白在其中的作用.此外,近年来我国学者采用前沿的全细胞电子断层扫描技术,首次对植物根细胞内膜系统进行了精细的三维结构分析并提出了一种新型的由多囊泡体成熟转变成液泡的模型,为进一步研究液泡形成的分子调控机制提供了依据.最后,本文对当前植物细胞器(包括多囊泡体和液泡)的生物发生和功能的研究进行了总结,并对此领域研究的发展前景做出了展望.  相似文献   

16.
生物膜在空间区域上不仅把细胞与外环境隔离开,而且在细胞内也起着隔离作用。膜在细胞内形成一个个小区域,使与某种机能有关的酶或酶系集中于一定的区域内,把细胞中不同的功能活动和代谢反应相互分开,这就是细胞内膜的区域化作用。细胞中机能与反应的区域化各种膜系细胞器是细胞内膜区域化的重要方式。线粒体的双层单位膜,内质网、高尔基体、溶酶体等的单层单位膜,以及双层单位膜构成的细胞核,可以把细胞中各种不同的功能活动分开。见下表。  相似文献   

17.
随着影像技术的发展,越来越多的研究表明细胞器之间存在广泛的直接相互作用,其主要功能是参与物质运输、细胞器新生与生长、细胞器分裂与融合等.细胞器间的互作主要由定位于这些膜器表面的蛋白质分子相互作用介导,磷脂也在其中发挥作用.脂滴作为储存中性脂的细胞器,是细胞内脂质代谢的中心,同时对机体脂稳态的维持起着至关重要的作用.从脂...  相似文献   

18.
正常大鼠肾脏细胞溶酶体膜的构成蛋白   总被引:1,自引:0,他引:1  
溶酶体是细胞内对其吞噬之物质溶解及消化之主要场所,同时也是细胞自噬作用的主要细胞器。为了进一步了解此细胞器的功能与结构,我们采用免疫荧光标记法,通过5种针对大鼠肝细胞溶酶体膜蛋白的特异性单克隆抗体,对大鼠正常肾脏细胞溶酶体膜蛋白进行了标记,并通过NH_4Cl溶液对溶酶体作了膜膨胀处理,结果显示:(1)细胞内溶酶体膜蛋白是由多种蛋白所构成,其各种蛋白的含量是不同的;(2)所有溶酶体膜蛋白均表达于该细胞器之表面;(3)NH_4Cl溶液能有效地使溶酶体扩张,这将有和于进一步研究溶酶体的结构。  相似文献   

19.
高晓萌  张治华 《遗传》2020,(1):45-56
生物大分子的相分离聚集(简称相分离)是驱动细胞内无膜细胞器形成的主要机制,参与众多生物学过程并和多种人类疾病密切相关,如神经退行性疾病等。近年来,研究人员围绕相分离现象的分子机制和生物学功能,发现了相分离与信号传导、染色质结构、基因表达、转录调控等一系列生物学过程存在紧密关联,为理解细胞命运决定和疾病发生提供了新的视角,为疾病治疗和新药研发开辟了新的可能途径。本文在回顾了相分离研究的发展过程、相分离现象在生物学中的应用,以及相分离与疾病的关系的基础上,重点分析了近年来相分离与染色质结构关联方面的研究突破,包括相分离如何感知并重塑染色质结构、超级增强子如何通过相分离调节基因表达、共转录激活因子如何通过相分离参与基因表达调控等,以期为进一步理解相分离与染色质空间结构的关系提供参考。  相似文献   

20.
多聚磷酸盐(polyphosphat,poly P)是一种由数十个或上百个磷酸根聚合而成的生物大分子,以颗粒状、胶体状和溶解状等多种状态存在于各类生物细胞中。生物体中的poly P能够通过分解提供能量;鳌合金属离子来调节细胞内渗透压,维持质膜稳定;与蛋白质或DNA结合稳定其结构,减轻细胞应激损伤。颗粒状多聚磷酸盐细胞器主要指细胞中用于贮存颗粒状poly P、金属阳离子以及蛋白质、氨基酸和少量水等物质的细胞器。在寄生虫细胞中颗粒状聚磷细胞器常称为酸性钙体,而细菌或者其他微生物细胞中则称为异染颗粒,但是随着研究的不断深入,发现酸性钙体和异染颗粒都具有相似的结构特征,遂将其统一定义为颗粒状多聚磷酸盐细胞器。颗粒状聚磷细胞器的发现拓展了生物共同祖先(last universal common ancestor,LUCA)的学说,丰富了原核生物细胞器认知,我们相信该细胞器在生命起源、抗环境胁迫、生物互作和代谢调控等方面具有重要功能,在疾病治疗以及磷生物地球化学循环过程中发挥重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号