首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluating landing technique using a computer simulation model of a gymnast and landing mat could be a useful tool when attempting to assess injury risk. The aims of this study were: (1) to investigate whether a subject-specific torque-driven or a subject-specific muscle-driven model of a gymnast is better at matching experimental ground reaction forces and kinematics during gymnastics landings, (2) to calculate their respective simulation run times and (3) to determine what level of model complexity is required to assess injury risk. A subject-specific planar seven-link wobbling mass model of a gymnast and a multi-layer model of a landing mat were developed for this study. Subject-specific strength parameters were determined which defined the maximum voluntary torque/angle/angular velocity relationship about each joint. This relationship was also used to produce subject-specific 'lumped' muscle models for each joint. Kinetic and kinematic data were obtained during landings from backward and forward rotating gymnastics vaults. Both torque-driven and muscle-driven models were capable of producing simulated landings that matched the actual performances (with overall percentage differences between 10.1% and 18.2%). The torque-driven model underestimated the internal loading on joints and bones, resulting in joint reaction forces that were less than 50% of those calculated using the muscle-driven model. Simulation time increased from approximately 3 min (torque driven) to more than 10 min (muscle driven) as model complexity increased. The selection of a simulation model for assessing injury risk must consider the need for determining realistic internal forces as the priority despite increases in simulation run time.  相似文献   

2.
In landings from a flight phase the mass centre of an athlete experiences rapid decelerations. This study investigated the extent to which co-contraction is beneficial or necessary in drop landings, using both experimental data and computer simulations. High speed video and force recordings were made of an elite martial artist performing drop landings onto a force plate from heights of 1.2, 1.5 and 1.8 m. Matching simulations of these landings were produced using a planar 8-segment torque-driven subject-specific computer simulation model. It was found that there was substantial co-activation of joint flexor and extensor torques at touchdown in all three landings. Optimisations were carried out to determine whether landings could be effected without any co-contraction at touchdown. The model was not capable of landing from higher than 1.05 m with no initial flexor or extensor activations. Due to the force–velocity properties of muscle, co-contraction with net zero joint torque at touchdown leads to increased extensor torque and decreased flexor torque as joint flexion velocity increases. The same considerations apply in any activity where rapid changes in net joint torque are required, as for example in jumps from a running approach.  相似文献   

3.
Prior reports indicate that female athletes who demonstrate high knee abduction moments (KAMs) during landing are more responsive to neuromuscular training designed to reduce KAM. Identification of female athletes who demonstrate high KAM, which accurately identifies those at risk for noncontact anterior cruciate ligament (ACL) injury, may be ideal for targeted neuromuscular training. Specific neuromuscular training targeted to the underlying biomechanical components that increase KAM may provide the most efficient and effective training strategy to reduce noncontact ACL injury risk. The purpose of the current commentary is to provide an integrative approach to identify and target mechanistic underpinnings to increased ACL injury in female athletes. Specific neuromuscular training techniques will be presented that address individual algorithm components related to high knee load landing patterns. If these integrated techniques are employed on a widespread basis, prevention strategies for noncontact ACL injury among young female athletes may prove both more effective and efficient.  相似文献   

4.
Weight-bearing tasks performed by humans consist of a series of phases with multiple objectives. Analysis of the relationship between control and dynamics during successive phases of the tasks is essential for improving performance without sustaining injury. Experimental evidence regarding foot landings suggests that the distribution of momentum among segments at contact influences stability during interaction with the landing surface. In this study, we hypothesized that modification of control in one subsystem, in our case shoulder torque, during the flight phase of an aerial task would enable the performer to maintain behavior of other subsystems (e.g.lower extremity kinematics) and initiate contact with momentum conditions consistent with successful task performance. To test this hypothesis, an experimentally validated multilink dynamic model that incorporated modifications in shoulder torque was used to simulate the flight phase dynamics of overrotated landings. The simulation results indicate that modification in shoulder torque during the flight phase enables gymnasts to maintain lower extremity kinematics and initiate contact with trunk angular velocities consistent with those observed during successful landings. These results suggest that modifications in the control logic of one subsystem may be sufficient for achieving both global and local task objectives of landing.  相似文献   

5.
Background: Metagenomic sequencing is a complex sampling procedure from unknown mixtures of many genomes. Having metagenome data with known genome compositions is essential for both benchmarking bioinformatics software and for investigating influences of various factors on the data. Compared to data from real microbiome samples or from defined microbial mock community, simulated data with proper computational models are better for the purpose as they provide more flexibility for controlling multiple factors. Methods: We developed a non-uniform metagenomic sequencing simulation system (nuMetaSim) that is capable of mimicking various factors in real metagenomic sequencing to reflect multiple properties of real data with customizable parameter settings. Results: We generated 9 comprehensive metagenomic datasets with different composition complexity from of 203 bacterial genomes and 2 archaeal genomes related with human intestine system. Conclusion: The data can serve as benchmarks for comparing performance of different methods at different situations, and the software package allows users to generate simulation data that can better reflect the specific properties in their scenarios.  相似文献   

6.
The complex multi-gear, multi-species tropical fisheries in developing countries are poorly understood and characterising the landings from these fisheries is often impossible using conventional approaches. A rapid assessment method for characterising landings at fish markets, using an index of abundance and estimated weight within taxonomic groups, is described. This approach was developed for contexts where there are no detailed data collection protocols, and where consistent data collection across a wide range of fisheries types and geographic areas is required, regardless of the size of the site and scale of the landings. This methodology, which was demonstrated at seven fish landing sites/fish markets in southern Indonesia between July 2008 and January 2011, provides a rapid assessment of the abundance and diversity in the wild catch over a wide variety of taxonomic groups. The approach has wider application for species-rich fisheries in developing countries where there is an urgent need for better data collection protocols, monitoring future changes in market demographics, and evaluating health of fisheries.  相似文献   

7.
A popular approach to detecting positive selection is to estimate the parameters of a probabilistic model of codon evolution and perform inference based on its maximum likelihood parameter values. This approach has been evaluated intensively in a number of simulation studies and found to be robust when the available data set is large. However, uncertainties in the estimated parameter values can lead to errors in the inference, especially when the data set is small or there is insufficient divergence between the sequences. We introduce a Bayesian model comparison approach to infer whether the sequence as a whole contains sites at which the rate of nonsynonymous substitution is greater than the rate of synonymous substitution. We incorporated this probabilistic model comparison into a Bayesian approach to site-specific inference of positive selection. Using simulated sequences, we compared this approach to the commonly used empirical Bayes approach and investigated the effect of tree length on the performance of both methods. We found that the Bayesian approach outperforms the empirical Bayes method when the amount of sequence divergence is small and is less prone to false-positive inference when the sequences are saturated, while the results are indistinguishable for intermediate levels of sequence divergence.  相似文献   

8.
Mean trophic level (MTL) of landings and primary production required (PPR) by fisheries are increasingly used in the assessment of sustainability in fisheries. However, in their present form, MTL and PPR are prone to misinterpretation. We show that it is important to account for actual catch data, define an appropriate historical and spatial domain, and carefully consider the effects of fisheries management, based on results from a case study of Swedish fisheries during the past century.  相似文献   

9.
The increased number of women participating in sports has led to a higher knee injury rate in women compared with men. Among these injuries, those occurring to the ACL are commonly observed during landing maneuvers. The purpose of this study was to determine gender differences in landing strategies during unilateral and bilateral landings. Sixteen male and 17 female recreational athletes were recruited to perform unilateral and bilateral landings from a raised platform, scaled to match their individual jumping abilities. Three-dimensional kinematics and kinetics of the dominant leg were calculated during the landing phase and reported as initial ground contact angle, ranges of motion (ROM) and peak moments. Lower extremity energy absorption was also calculated for the duration of the landing phase. Results showed that gender differences were only observed in sagittal plane hip and knee ROM, potentially due to the use of a relative drop height versus the commonly used absolute drop height. Unilateral landings were characterized by significant differences in hip and knee kinematics that have been linked to increased injury risk and would best be classified as "stiff" landings. The ankle musculature was used more for impact absorption during unilateral landing, which required increased joint extension at touchdown and may increase injury risk during an unbalanced landing. In addition, there was only an 11% increase in total energy absorption during unilateral landings, suggesting that there was a substantial amount of passive energy transfer during unilateral landings.  相似文献   

10.
Previous research suggests high impact forces generated during landings contribute to noncontact anterior cruciate ligament (ACL) injuries. In women, neuromuscular differences appear to modify the ability to dissipate landing forces when compared to men. This study examined peak vertical impact forces (F(p)) and rate of force development (RFD) following a 9-week, low-intensity (simple jump-landing-jump tasks) and volume (number of foot contacts per workout) plyometric-based knee ligament injury prevention (KLIP) program. Female subjects were randomly assigned into control (n = 14) and treatment (n = 14) groups. Treatment subjects attended KLIP sessions twice a week for 9 weeks, and control subjects received no intervention. Ground reaction forces (F(p) and RFD) generated during a step-land protocol were assessed at study onset and termination. Significant reductions in F(p) (p = 0.0004) and RFD (p = 0.0205) were observed in the treatment group. Our results indicate that 9 weeks of KLIP training altered landing strategies in women to lower F(p) and RFD. These changes are considered conducive to a reduced risk of knee injury while landing.  相似文献   

11.
Training the gymnasts to view the landing area when learning aerial skills may lead to more consistent landings but can be problematic and potentially dangerous. A virtual environment allowing gymnasts to get introduced to viewing techniques safely is presented. The system is based on existing simulation models and visualisation software, and is implemented using client–server technology to allow reuse with new simulation models in the future.  相似文献   

12.
ABSTRACT: Serpell, BG, Scarvell, JM, Ball, NB, and Smith, PN. Mechanisms and risk factors for noncontact ACL injury in age mature athletes who engage in field or court sports: A summary of literature since 1980. J Strength Cond Res 26(11): 3160-3176, 2012-Epidemiological data show that in the last 10 years alone the incidence and rate of anterior cruciate ligament (ACL) injuries have not changed appreciably. Furthermore, many ACL injuries appear to be noncontact in nature and sustained while engaging in some field or court sport. Thus, the need to investigate novel methods and adopt training strategies to prevent ACL injuries is paramount. To do so, however, requires an understanding of the mechanisms and risk factors for the injury. The aim of this review was to investigate the mechanisms and risk factors for noncontact ACL injuries in age mature athletes who compete in field or court sports. A search of the entire MEDLINE database for biomedicine was performed, and an iterative reference check was also conducted. A total of 87 articles disclosed met the eligibility criteria. Articles were grouped into 'themes'; 'anatomical and biomechanical mechanisms and risk factors,' 'intrinsic mechanisms and risk factors,' and 'extrinsic mechanisms and risk factors.' In this review, it is concluded that there are still a number of risk factors and mechanisms for noncontact ACL injury that are not well understood. However, the importance of dynamic knee joint stability is highlighted. It is also suggested that novel methods for preventing ACL injury be investigated and developed.  相似文献   

13.
Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to generate code for physiological simulations and provides a tool for studying cardiac electrophysiology.  相似文献   

14.
Few ankle inversion studies have taken anticipation bias into account or collected data with an experimental design that mimics actual injury mechanisms. Twenty-three participants performed randomized single-leg vertical drop landings from 20 cm. Subjects were blinded to the landing surface (a flat force plate or 30° inversion wedge on the force plate). After each trial, participants reported whether they anticipated the landing surface. Participant responses were validated with EMG data. The protocol was repeated until four anticipated and four unanticipated landings onto the inversion wedge were recorded. Results revealed a significant main effect for landing condition. Normalized vertical ground reaction force (% body weights), maximum ankle inversion (degrees), inversion velocity (degrees/second), and time from contact to peak muscle activation (seconds) were significantly greater in unanticipated landings, and the time from peak muscle activation to maximum VGRF (second) was shorter. Unanticipated landings presented different muscle activation patterns than landings onto anticipated surfaces, which calls into question the usefulness of clinical studies that have not controlled for anticipation bias.  相似文献   

15.
The mechanical interactions during impact of a falling human body onto a non-rigid surface are complex. Mechanical properties of both the impacting body and the impacted surface contribute to risk of injury. Increased understanding of these properties should provide insight into the process and how to reduce injury risk. We assessed whether modelling energy flows in the body during impact can provide useful information. As input, we used data from gymnastic tumbling mats and from children performing an exercise involving freefall onto an outstretched arm. Even basic energy transfer principles provided information not discerned by the mechanical approach traditionally used. The model identified differences between surfaces in how energy flowed through an arm and the strains imposed on the wrist during impact and rebound. Therefore, it shows promise for identifying potentially injurious human–surface interactions. Analysis of other human impact situations, and the relationship between the energy flow and injury risk, is planned.  相似文献   

16.
Non-contact anterior cruciate ligament (ACL) injuries account for 70% of all ACL injuries, and can lead to missed time from activity for athletes and a predisposition for knee osteoarthritis. Prior research has shown that athletes who land in a stiff manner, with larger internal knee adduction and extension moments, are at greater risk for an ACL injury. A three-dimensional accelerometer placed at the tibial tuberosity may prove to be a low-cost means of assessing these risk factors. The primary purpose of this study was to compare tibial accelerations during drop landings with kinematic and kinetic risk factors for ACL injury measured with three-dimensional motion capture. The secondary purpose of this study was to compare these measures between soft and stiff landings. Participants were instructed to land bilaterally in preferred, soft, and stiff manners. Peak knee flexion decreased significantly from soft to stiff landings. Peak internal knee extension moment, peak anterior/posterior knee acceleration, and peak medial knee acceleration all increased significantly from soft to stiff landings. No associations were found between landing condition and either frontal plane knee angle at maximum vertical ground reaction force or peak internal knee adduction moment. Significant positive associations between kinetics and accelerations were found only in the sagittal plane. As such, while a three-dimensional accelerometer could discern between soft and stiff landings in both planes, it may be better suited to predict kinetic risk factors in the sagittal plane.  相似文献   

17.
Measurement and evaluation of postural load in occupational work situations   总被引:1,自引:0,他引:1  
This paper describes methodological considerations and problems experienced when quantifying muscle load in occupational work situations. A system for the quantification of the health effect of prolonged muscle load on the shoulder muscles is also described. Combined measurements of postural load and health effects can be used in a quantitative evaluation of postural load as a risk factor for the development of musculo-skeletal injury. Postural muscle load may be quantified by electromyography or by biomechanical methods. Problems associated with quantitative electromyography are described, including selective inhibition of functional compartments in a muscle. This phenomenon results in other compartments coming under proportionally higher strain, disturbing the force-EMG calibration curves. It is suggested that fatigue measurements, indicated by a shift in the centre frequency of the EMG frequency spectrum, are not easily used for evaluation of vocational EMG recordings if the purpose is to indicate the risk of occupational muscle injury. Load measurements using biomechanical methods may provide an acceptable alternative to electromyography, but more work is required before these methods can be used on a routine basis.  相似文献   

18.
In candidate gene association studies, usually several elementary hypotheses are tested simultaneously using one particular set of data. The data normally consist of partly correlated SNP information. Every SNP can be tested for association with the disease, e.g., using the Cochran-Armitage test for trend. To account for the multiplicity of the test situation, different types of multiple testing procedures have been proposed. The question arises whether procedures taking into account the discreteness of the situation show a benefit especially in case of correlated data. We empirically evaluate several different multiple testing procedures via simulation studies using simulated correlated SNP data. We analyze FDR and FWER controlling procedures, special procedures for discrete situations, and the minP-resampling-based procedure. Within the simulation study, we examine a broad range of different gene data scenarios. We show that the main difference in the varying performance of the procedures is due to sample size. In small sample size scenarios,the minP-resampling procedure though controlling the stricter FWER even had more power than the classical FDR controlling procedures. In contrast, FDR controlling procedures led to more rejections in higher sample size scenarios.  相似文献   

19.
From clinical knowledge, it has been established that hepatic traumas frequently lead to lethal injuries. In frontal or lateral crash situations, these injuries can be induced by pure deceleration effects or blunt trauma due to belt or steering wheel impact. Concerning the liver under frontal decelerations, how could one investigate organ behaviour leading to the injury mechanisms? This work couples experimental organ decelerations measurements (with 19 tests on cadaver trunks) and finite element simulation, provides a first analysis of the liver behaviour within the abdomen. It shows the influence of the liver attachment system that leads to liver trauma and also torsion effects between the two lobes of the liver. Injury mechanisms were evaluated through the four phases of the liver kinematics under frontal impact: (1) postero-anterior translation, (2) compression and sagittal rotation, (3) rotation in the transverse plane and (4) relaxation.  相似文献   

20.
Summary In case–control research where there are multiple case groups, standard analyses fail to make use of all available information. Multiple events case–control (MECC) studies provide a new approach to sampling from a cohort and are useful when it is desired to study multiple types of events in the cohort. In this design, subjects in the cohort who develop any event of interest are sampled, as well as a fraction of the remaining subjects. We show that a simple case–control analysis of data arising from MECC studies is biased and develop three general estimating‐equation‐based approaches to analyzing data from these studies. We conduct simulation studies to compare the efficiency of the various MECC analyses with each other and with the corresponding conventional analyses. It is shown that the gain in efficiency by using the new design is substantial in many situations. We demonstrate the application of our approach to a nested case–control study of the effect of oral sodium phosphate use on chronic kidney injury with multiple case definitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号