首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Nrf2 appears to be a critical regulator of diabetes in rodents. However, the underlying mechanisms as well as the clinical relevance of the Nrf2 signaling in human diabetes remain to be fully understood. Herein, we report that islet expression of Nrf2 is upregulated at an earlier stage of diabetes in both human and mice. Activation of Nrf2 suppresses oxidative stress and oxidative stress-induced β-cell apoptosis while enhancing autophagic clearance in isolated rat islets. Additionally, oxidative stress per se activated autophagy in β-cells. Thus, these results reveal that Nrf2 drives a novel antioxidant independent autophagic clearance for β-cell protection in the setting of diabetes.  相似文献   

2.
In the present study, we determined the protective role of lutein against Aβ 25–35 peptide-induced oxidative stress and apoptosis in bEND.3 cells. Cell viability was determined through MTT assay. Reactive oxygen species, lipid peroxides, and antioxidant enzyme activities were evaluated to analyze the oxidative stress status. NF-κB and Nrf-2 downstream target protein expressions were determined through western blot. Apoptosis was analyzed through caspase activities and subG1 accumulation. The results showed that Aβ 25–35 significantly increased (p < 0.001) oxidative stress biomarkers. Aβ 25–35 significantly up-regulated NF-κB nuclear expression and down-regulated Nrf-2 levels and HO-1 and, NQO-1 expressions. Aβ 25–35 induced apoptosis through decreasing mitochondrial membrane potential and increasing caspase 9 and 3 activities. Lutein pre-treatment significantly (p < 0.001) improved cell viability and decreased ROS levels (p < 0.001) and lipid peroxidation (p < 0.01). Lutein prevented Aβ 25–35-induced NF-κB nuclear expressions and up-regulated Nrf-2 expressions. Further, lutein also improved mitochondrial membrane potential and down-regulated caspase activities and subG1 accumulation. The present study shows the protective role of lutein against Aβ 25–35-induced toxicity by modulating Nrf-2 and NF-κB expressions in cerebrovascular endothelial cells.  相似文献   

3.
Molecular Biology Reports - Traumatic brain injury (TBI) is the leading cause of mortality and morbidity in young adults and children in the industrialized countries; however, there are presently...  相似文献   

4.
5.
6.
7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号