首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The knee meniscus and hip labrum appear to be important for joint health, but the mechanisms by which these structures perform their functions are not fully understood. The fluid phase of articular cartilage provides compressive stiffness and aids in maintaining a low friction articulation. Healthy fibrocartilage, the tissue of meniscus and labrum, has a lower fluid permeability than articular cartilage. In this study we hypothesized that an important function of the knee meniscus and the hip labrum is to augment fluid retention in the articular cartilage of a mechanically loaded joint. Axisymmetric hyperporoelastic finite element models were analyzed for an idealized knee and an idealized hip. The results indicate that the meniscus maintained fluid pressure and inhibited fluid exudation in knee articular cartilage. Similar, but smaller, effects were seen with the labrum in the hip. Increasing the fibrocartilage permeability relative to that of articular cartilage gave a consolidation rate and loss of fluid load support comparable to that predicted by meniscectomy or labrectomy. The reduced articular cartilage fluid pressure that was calculated for the joint periphery is consistent with patterns of endochondral ossification and osteophyte formation in knee and hip osteoarthritis. High articular central strains and loss of fluid load support after meniscectomy could lead to fibrillation. An intact low-permeability fibrocartilage is important for limiting fluid exudation from articular cartilage in the hip and knee. This may be an important aspect of the role of fibrocartilage in protecting these joints from osteoarthritis.  相似文献   

2.
Cartilage is categorized into three general subgroups, hyaline, elastic, and fibrocartilage, based primarily on morphologic criteria and secondarily on collagen (Types I and II) and elastin content. To more precisely define the different cartilage subtypes, rabbit cartilage isolated from joint, nose, auricle, epiglottis, and meniscus was characterized by immunohistochemical (IHC) localization of elastin and of collagen Types I, II, V, VI, and X, by biochemical analysis of total glycosaminoglycan (GAG) content, and by biomechanical indentation assay. Toluidine blue staining and safranin-O staining were used for morphological assessment of the cartilage subtypes. IHC staining of the cartilage samples showed a characteristic pattern of staining for the collagen antibodies that varied in both location and intensity. Auricular cartilage is discriminated from other subtypes by interterritorial elastin staining and no staining for Type VI collagen. Epiglottal cartilage is characterized by positive elastin staining and intense staining for Type VI collagen. The unique pattern for nasal cartilage is intense staining for Type V collagen and collagen X, whereas articular cartilage is negative for elastin (interterritorially) and only weakly positive for collagen Types V and VI. Meniscal cartilage shows the greatest intensity of staining for Type I collagen, weak staining for collagens V and VI, and no staining with antibody to collagen Type X. Matching cartilage samples were categorized by total GAG content, which showed increasing total GAG content from elastic cartilage (auricle, epiglottis) to fibrocartilage (meniscus) to hyaline cartilage (nose, knee joint). Analysis of aggregate modulus showed nasal and auricular cartilage to have the greatest stiffness, epiglottal and meniscal tissue the lowest, and articular cartilage intermediate. This study illustrates the differences and identifies unique characteristics of the different cartilage subtypes in rabbits. The results provide a baseline of data for generating and evaluating engineered repair cartilage tissue synthesized in vitro or for post-implantation analysis.  相似文献   

3.
Nonlinear, linear and failure properties of articular cartilage and meniscus in opposing contact surfaces are poorly known in tension. Relationships between the tensile properties of articular cartilage and meniscus in contact with each other within knee joints are also not known. In the present study, rectangular samples were prepared from the superficial lateral femoral condyle cartilage and lateral meniscus of bovine knee joints. Tensile tests were carried out with a loading rate of 5 mm/min until the tissue rupture. Nonlinear properties of the toe region, linear properties in larger strains, and failure properties of both tissues were analysed. The strain-dependent tensile modulus of the toe region, Young's modulus of the linear region, ultimate tensile stress and toughness were on average 98.2, 8.3, 4.0 and 1.9 times greater (p<0.05) for meniscus than for articular cartilage. In contrast, the toe region strain, yield strain and failure strain were on average 9.4, 3.1 and 2.3 times greater (p<0.05) for cartilage than for meniscus. There was a significant negative correlation between the strain-dependent tensile moduli of meniscus and articular cartilage samples within the same joints (r=−0.690, p=0.014). In conclusion, the meniscus possesses higher nonlinear and linear elastic stiffness and energy absorption capability before rupture than contacting articular cartilage, while cartilage has longer nonlinear region and can withstand greater strains before failure. These findings point out different load carrying demands that both articular cartilage and meniscus have to fulfil during normal physiological loading activities of knee joints.  相似文献   

4.
The purpose of the present study was to develop a model to simulate the articular cartilage growth in an intact knee model with a metal implant replacing a degenerated portion of the femoral cartilage. The human knee joint was approximated with a simplified axisymmetric shape of the femoral condyle along with the cartilage, meniscus and bones. Two individually growing constituents (proteoglycans and collagen) bound to solid matrix were considered in the solid phase of the cartilage. The cartilage behavior was modeled with a nonlinear biphasic porohyperelastic material model, and meniscus with a transversely isotropic linear biphasic poroelastic material model. Two criteria (permeation and shear), both driven by mechanical loading, were considered to trigger the growth in the solid constituents. Mechanical loading with sixty heavy cycles was considered to represent daily walking activity. The growth algorithm was implemented for 90 days after implantation. The results from simulations show that both cartilage layers were more stimulated near the implant which lead to more growth of the cartilage near the defect. The method developed in the present work could be a powerful technique if more accurate material data and growth laws were available.  相似文献   

5.
骨关节炎软骨细胞发生内质网应激   总被引:1,自引:0,他引:1  
目的:研究骨关节炎软骨细胞是否发生内质网应激现象。方法:对关节置换术后的人类骨关节炎软骨标本和正常关节软骨标本切片进行内质网应激标志分子免疫球蛋白重链结合蛋白(BiP)的免疫组织化学检测;对小鼠膝关节进行半月板切断术诱发实验性骨关节炎,在术后1、3和6周取材,对组织切片进行番红花“O”染色、Mankin评分及BiP的免疫组织化学检测。结果:所有人类骨关节炎标本中软骨细胞BiP的表达明显升高。番红花“O”染色结果表明,在小鼠骨关节炎模型中,全部手术侧关节表面发生磨损,且随着术后时间延长关节表面磨损范围逐步扩大,手术侧Mankn分值显著高于对照侧;此外,手术侧的软骨细胞内BiP呈阳性表达,且表达量随术后时间延长而增加。结论:在人类骨关节炎标本和实验性小鼠骨关节炎模型中,关节软骨细胞均发生明显的内质网应激现象。  相似文献   

6.
In this study, human tibia plateaus with the meniscus removed were impacted on various regions of the plateau surface via a drop test using a 5mm indenter. Osteochondral blocks containing the failure site were then extracted, chemically fixed, dehydrated, gold-particle coated, and sent for X-ray micro-CT imaging to obtain 3-D image reconstructions of the cartilage and underlying bone. Cartilage failure upon impact appeared to be characteristically brittle in nature. Impacted cartilage from the region not protected by the meniscus showed a relatively large cavernous disruption with microcrack propagation extending radially into the subchondral bone, while impacted cartilage from beneath the meniscus showed less dramatic surface disruption and with no underlying bone failure.  相似文献   

7.
Despite the fact that type III collagen is the second most abundant collagen type in the body, its contribution to the physiologic maintenance and repair of skeletal tissues remains poorly understood. This study queried the role of type III collagen in the structure and biomechanical functions of two structurally distinctive tissues in the knee joint, type II collagen-rich articular cartilage and type I collagen-dominated meniscus. Integrating outcomes from atomic force microscopy-based nanomechanical tests, collagen fibril nanostructural analysis, collagen cross-link analysis and histology, we elucidated the impact of type III collagen haplodeficiency on the morphology, nanostructure and biomechanical properties of articular cartilage and meniscus in Col3a1+/− mice. Reduction of type III collagen leads to increased heterogeneity and mean thickness of collagen fibril diameter, as well as reduced modulus in both tissues, and these effects became more pronounced with skeletal maturation. These data suggest a crucial role of type III collagen in mediating fibril assembly and biomechanical functions of both articular cartilage and meniscus during post-natal growth. In articular cartilage, type III collagen has a marked contribution to the micromechanics of the pericellular matrix, indicating a potential role in mediating the early stage of type II collagen fibrillogenesis and chondrocyte mechanotransduction. In both tissues, reduction of type III collagen leads to decrease in tissue modulus despite the increase in collagen cross-linking. This suggests that the disruption of matrix structure due to type III collagen deficiency outweighs the stiffening of collagen fibrils by increased cross-linking, leading to a net negative impact on tissue modulus. Collectively, this study is the first to highlight the crucial structural role of type III collagen in both articular cartilage and meniscus extracellular matrices. We expect these results to expand our understanding of type III collagen across various tissue types, and to uncover critical molecular components of the microniche for regenerative strategies targeting articular cartilage and meniscus repair.  相似文献   

8.

Introduction

The small leucine-rich proteoglycans (SLRPs) modulate tissue organization, cellular proliferation, matrix adhesion, growth factor and cytokine responses, and sterically protect the surface of collagen type I and II fibrils from proteolysis. Catabolism of SLRPs has important consequences for the integrity of articular cartilage and meniscus by interfering with their tissue homeostatic functions.

Methods

SLRPs were dissociatively extracted from articular cartilage from total knee and hip replacements, menisci from total knee replacements, macroscopically normal and fibrillated knee articular cartilage from mature age-matched donors, and normal young articular cartilage. The tissue extracts were digested with chondroitinase ABC and keratanase-I before identification of SLRP core protein species by Western blotting using antibodies to the carboxyl-termini of the SLRPs.

Results

Multiple core-protein species were detected for all of the SLRPs (except fibromodulin) in the degenerate osteoarthritic articular cartilage and menisci. Fibromodulin had markedly less fragments detected with the carboxyl-terminal antibody compared with other SLRPs. There were fewer SLRP catabolites in osteoarthritic hip than in knee articular cartilage. Fragmentation of all SLRPs in normal age-matched, nonfibrillated knee articular cartilage was less than in fibrillated articular cartilage from the same knee joint or total knee replacement articular cartilage specimens of similar age. There was little fragmentation of SLRPs in normal control knee articular cartilage. Only decorin exhibited a consistent increase in fragmentation in menisci in association with osteoarthritis. There were no fragments of decorin, biglycan, lumican, or keratocan that were unique to any tissue. A single fibromodulin fragment was detected in osteoarthritic articular cartilage but not meniscus. All SLRPs showed a modest age-related increase in fragmentation in knee articular and meniscal cartilage but not in other tissues.

Conclusion

Enhanced fragmentation of SLRPs is evident in degenerate articular cartilage and meniscus. Specific decorin and fibromodulin core protein fragments in degenerate meniscus and/or human articular cartilage may be of value as biomarkers of disease. Once the enzymes responsible for their generation have been identified, further research may identify them as therapeutic targets.  相似文献   

9.
The meniscus is essential to the functioning of the knee, offering load support, congruency, lubrication, and protection to the underlying cartilage. Meniscus degeneration affects ∼35% of the population, and potentially leads to knee osteoarthritis. The etiology of meniscal degeneration remains to be elucidated, although many factors have been considered. However, the role of nutritional supply to meniscus cells in the pathogenesis of meniscus degeneration has been so far overlooked. Nutrients are delivered to meniscal cells through the surrounding synovial fluid and the blood vessels present in the outer region of the meniscus. During maturation, vascularization progressively recedes up to the outer 10% of the tissue, leaving the majority avascular. It has been hypothesized that vascular recession might significantly reduce the nutrient supply to cells, thus contributing to meniscus degeneration. The objective of this study was to evaluate the effect of vascular recession on nutrient levels available to meniscus cells. This was done by developing a novel computational model for meniscus homeostasis based on mixture theory. It was found that transvascular transport of nutrients in the vascularized region of the meniscus contributes to more than 40% of the glucose content in the core of the tissue. However, vascular recession does not significantly alter nutrient levels in the meniscus, reducing at most 5% of the nutrient content in the central portion of the tissue. Therefore, our analysis suggests that reduced vascularity is not likely a primary initiating source in tissue degeneration. However, it does feasibly play a key role in inability for self-repair, as seen clinically.  相似文献   

10.
L Somer  T Somer 《Acta anatomica》1983,116(3):234-244
A histological analysis of the structure of intact knee joint menisci was carried out in adult dogs. By means of specific histochemical methods for the connective tissue and cartilage, it was found that the meniscus as a whole does not have a unique structure. The anterior and posterior horns are populated by round chondroid cells encircled by abundant interstitial substance and branched wavy connective fibers; blood vessels are present. The outer third of the meniscus is constituted of cross bundles of connective fibers, fibrocytes and spindle-like areas of loose connective tissue with blood vessels. The inner avascular two thirds of the meniscus are filled with parallel circumferentially oriented fascicles of connective fibers, ovally elongated chondroid cells, and a small quantity of chondroid interstitial substance. In some menisci, in the inner two thirds of the body, there are isles of typical cartilage, which show metachromasia of the beta type and rarely of the gamma type. The occurrence and way of the manifestation of cartilage are of an individual character. The structural duality of the knee meniscus is accounted for by its functional duality manifested in offering resistance to the forces of traction and pressure, the latter ones favoring the process of evolution of tissue from connective, through chondroid, to cartilaginous.  相似文献   

11.
12.
Pham A  Hull ML 《Journal of biomechanics》2007,40(14):3223-3229
When used in in vitro studies, soft tissues such as the meniscus and articular cartilage are susceptible to dehydration and its effects, such as changes in size and shape as well as changes in structural and material properties. To quantify the effect of dehydration on the meniscus and articular cartilage, the first two objectives of this study were to (1) determine the percent change in meniscal dimensions over time due to dehydration, and (2) determine the percent change in articular cartilage thickness due to dehydration. To satisfy these two objectives, the third objective was to develop a new laser-based three-dimensional coordinate digitizing system (3-DCDS II) that can scan either the meniscus or articular cartilage surface within a time such that there is less than a 5% change in measurements due to dehydration. The new instrument was used to measure changes in meniscal and articular cartilage dimensions of six cadaveric specimens, which were exposed to air for 120 and 130 min, respectively. While there was no change in meniscal width, meniscal height decreased linearly by 4.5% per hour. Articular cartilage thickness decreased nonlinearly at a rate of 6% per hour after 10 min, and at a rate of 16% per hour after 130 min. The system bias and precision of the new instrument at 0 degrees slope of the surface being scanned were 0.0 and 2.6 microm, respectively, while at 45 degrees slope the bias and precision were 31.1 and 22.6 microm, respectively. The resolution ranged between 200 and 500 microm. Scanning an area of 60 x 80 mm (approximately the depth and width of a human tibial plateau) took 8 min and a complete scan of all five sides of a meniscus took 24 min. Thus, the 3-DCDS II can scan an entire meniscus with less than 2% change in dimensions due to dehydration and articular cartilage with less than 0.4% change. This study provides new information on the amount of time that meniscal tissue and articular cartilage can be exposed to air before marked changes in size and shape, and possibly biomechanical, structural and material properties, occur. The new 3-DCDS II designed for this study provides fast and accurate dimensional measurements of both soft and hard tissues.  相似文献   

13.
Self-control and patience are character strengths predictive of positive developmental outcomes, but few interventions targeting their growth have been tested in adolescents. Moreover, interventions based on the limited-strength model of self-control have received considerable criticism, but few studies have tested moderation of interventions by motivational variables fundamental to computational and process models of self-control. To correct this deficiency, we tested the ability of three interventions—using one’s nondominant hand, engaging in cognitive reappraisal exercises, and tracking one’s schedule—to increase self-control and patience in 355 high school students (mean = 16.0 years; 59% female). The nondominant hand and schedule tracking conditions were found to increase self-control, patience, and well-being only when the perceived difficulty was low. Results suggest that the limited-strength model of self-control is insufficient and underscore the explanatory power of computational and process models that account for difficulty. Implications for constructing character interventions for adolescents are discussed.  相似文献   

14.
Knee osteoarthritis is accelerated by damage to the meniscus, a fibrocartilage tissue that assists in load transmission. However, little is known about the mechanical or cellular response of the meniscus to injurious overloading. Here, in vitro studies explored injury to meniscal explants using a compressive overloading protocol that has been well characterized for articular cartilage. Cartilage samples were processed in parallel as a reference to the extensive literature on cartilage injury. Injured meniscal explants showed extensive cell death at the articulating surface but no gross tissue damage, while similar conditions of peak stress and strain resulted in cartilage surface fissures and cell death consistent with moderate overloading. Post-injury gene expression in meniscal explants indicated a decrease in seven of the nine catabolic and pro-inflammatory molecules surveyed, while cartilage experienced a downregulation in ADAMTS-5 and TNF-α only. These data demonstrated a resiliency of the meniscus to injury, and that an acute increase in catabolic activities is not necessarily a consequence of mechanical overloading.  相似文献   

15.
Osteoarthritis is a disease of multifactorial aetiology characterised by progressive breakdown of articular cartilage. In the early stages of the disease, changes become apparent in the superficial zone of articular cartilage, including fibrillation and fissuring. Normally, a monolayer of lubricating molecules is adsorbed on the surface of cartilage and contributes to the minimal friction and wear properties of synovial joints. Proteoglycan 4 is the lubricating glycoprotein believed to be primarily responsible for this boundary lubrication. Here we have used an established ovine meniscectomy model of osteoarthritis, in which typical degenerative changes are observed in the operated knee joints at three months after surgery, to evaluate alterations in proteoglycan 4 expression and localisation in the early phases of the disease. In normal control joints, proteoglycan 4 was immunolocalised in the superficial zone of cartilage, particularly in those regions of the knee joint covered by a meniscus. After the onset of early osteoarthritis, we demonstrated a loss of cellular proteoglycan 4 immunostaining in degenerative articular cartilage, accompanied by a significant (p < 0.01) decrease in corresponding mRNA levels. Early loss of proteoglycan 4 from the cartilage surface in association with a decrease in its expression by superficial-zone chondrocytes might have a role in the pathogenesis of osteoarthritis.  相似文献   

16.
Cartilage is a tissue with only limited reparative capacities. A small part of its volume is composed of cells, the remaining part being the hydrated extracellular matrix (ECM) with collagens and proteoglycans as its main constituents. The functioning of cartilage depends heavily on its ECM. Although it is known that the various (fibro)cartilaginous tissues (articular cartilage, annulus fibrosus, nucleus pulposus, and meniscus) differ from one each other with respect to their molecular make-up, remarkable little quantitative information is available with respect to its biochemical constituents, such as collagen content, or the various posttranslational modifications of collagen. Furthermore, we have noticed that tissue-engineering strategies to replace cartilaginous tissues pay in general little attention to the biochemical differences of the tissues or the phenotypical differences of the (fibro)chondrocytes under consideration. The goal of this paper is therefore to provide quantitative biochemical data from these tissues as a reference for further studies. We have chosen the goat as the source of these tissues, as this animal is widely accepted as an animal model in orthopaedic studies, e.g. in the field of cartilage degeneration and tissue engineering. Furthermore, we provide data on mRNA levels (from genes encoding proteins/enzymes involved in the synthesis and degradation of the ECM) from (fibro)chondrocytes that are freshly isolated from these tissues and from the same (fibro)chondrocytes that are cultured for 18 days in alginate beads. Expression levels of genes involved in the cross-linking of collagen were different between cells isolated from various cartilaginous tissues. This opens the possibility to include more markers than the commonly used chondrogenic markers type II collagen and aggrecan for cartilage tissue-engineering applications.  相似文献   

17.

Background

There is an emerging interest in using magnetic resonance imaging (MRI) T2* measurement for the evaluation of degenerative cartilage in osteoarthritis (OA). However, relatively few studies have addressed OA-related changes in adjacent knee structures. This study used MRI T2* measurement to investigate sequential changes in knee cartilage, meniscus, and subchondral bone marrow in a rat OA model induced by anterior cruciate ligament transection (ACLX).

Materials and Methods

Eighteen male Sprague Dawley rats were randomly separated into three groups (n = 6 each group). Group 1 was the normal control group. Groups 2 and 3 received ACLX and sham-ACLX, respectively, of the right knee. T2* values were measured in the knee cartilage, the meniscus, and femoral subchondral bone marrow of all rats at 0, 4, 13, and 18 weeks after surgery.

Results

Cartilage T2* values were significantly higher at 4, 13, and 18 weeks postoperatively in rats of the ACLX group than in rats of the control and sham groups (p<0.001). In the ACLX group (compared to the sham and control groups), T2* values increased significantly first in the posterior horn of the medial meniscus at 4 weeks (p = 0.001), then in the anterior horn of the medial meniscus at 13 weeks (p<0.001), and began to increase significantly in the femoral subchondral bone marrow at 13 weeks (p = 0.043).

Conclusion

Quantitative MR T2* measurements of OA-related tissues are feasible. Sequential change in T2* over time in cartilage, meniscus, and subchondral bone marrow were documented. This information could be potentially useful for in vivo monitoring of disease progression.  相似文献   

18.
Perlecan is a ubiquitous proteoglycan of basement membrane and vascularized tissues but is also present in articular cartilage, meniscus and intervertebral disc, which are devoid of basement membrane and predominantly avascular. It is a prominent pericellular proteoglycan in the transitory matrix of the cartilaginous rudiments that develop into components of diarthrodial joints and the axial skeleton, and it forms intricate perichondrial vessel networks that define the presumptive articulating surfaces of developing joints and line the cartilage canals in cartilaginous rudiments. Such vessels have roles in the nutrition of the expanding cell numbers in the developing joint. Perlecan sequesters a number of growth factors pericellularly (FGFs, PDGF, VEGF and CTGF) and through these promotes cell signalling, cell proliferation and differentiation. Perlecan also interacts with a diverse range of extracellular matrix proteins, stabilising and organising the ECM, and promoting collagen fibrillogenesis. Perlecan is a prominent pericellular component of mesenchymal cells from their earliest developmental stages through to maturation, forming cell-cell and cell-ECM interconnections that are suggestive of a role in mechanosensory processes important to tissue homeostasis.  相似文献   

19.
A thorough understanding of the relationship between the biological and mechanical functions of articular cartilage is necessary to develop diagnostics and treatments for arthritic diseases. A key step in developing this understanding is the establishment of models which utilize large numbers of biomarkers to create comprehensive models of the interplay between cartilage biology and biomechanics, which will more accurately demonstrate the complex etiology and progression of tissue adaptation and degradation. It is the goal of this study to demonstrate the ability of artificial neural networks (ANNs) to utilize biomarkers to create predictive models of articular cartilage biomechanics, which will provide a basis for more sophisticated research in the future. Osteochondral plugs were collected from patients undergoing total knee arthroplasty, cultured, then analyzed to collect proteomic, compositional, and histologic biomarker data. Samples were subjected to stress relaxation testing as well as computational simulations using finite element analysis (FEA) modeling and optimization to determine key mechanical properties. The acquired data was fed into an ANN to generate a model which predicts the biomechanical properties of cartilage from given biomarkers. Using all significant inputs, the developed neural network predicted the ground substance modulus with a moderate degree of accuracy, but had difficulty predicting the collagen fiber modulus and cartilage permeability. Using only clinically attainable biomarkers, the best-performing model produced comparably accurate and more consistent predictions of all three mechanical properties. These models demonstrate the potential for ANNs to be included in clinical studies of articular cartilage.  相似文献   

20.
A validated three-dimensional computational model of a human knee joint   总被引:7,自引:0,他引:7  
This paper presents a three-dimensional finite element tibio-femoral joint model of a human knee that was validated using experimental data. The geometry of the joint model was obtained from magnetic resonance (MR) images of a cadaveric knee specimen. The same specimen was biomechanically tested using a robotic/universal force-moment sensor (UFS) system and knee kinematic data under anterior-posterior tibial loads (up to 100 N) were obtained. In the finite element model (FEM), cartilage was modeled as an elastic material, ligaments were represented as nonlinear elastic springs, and menisci were simulated by equivalent-resistance springs. Reference lengths (zero-load lengths) of the ligaments and stiffness of the meniscus springs were estimated using an optimization procedure that involved the minimization of the differences between the kinematics predicted by the model and those obtained experimentally. The joint kinematics and in-situ forces in the ligaments in response to axial tibial moments of up to 10 Nm were calculated using the model and were compared with published experimental data on knee specimens. It was also demonstrated that the equivalent-resistance springs representing the menisci are important for accurate calculation of knee kinematics. Thus, the methodology developed in this study can be a valuable tool for further analysis of knee joint function and could serve as a step toward the development of more advanced computational knee models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号