首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical modification of chitosan is a promising method for the improvement of biological activity. In this study, chitosan-caffeic acid (CCA) was prepared and its in vitro hepatoprotective ability against hydrogen peroxide-induced hepatic damage in liver cells was evaluated. Treatment with CCA (50–400 µg/mL) did not show cytotoxicity and also significantly (p < 0.05) recovered cell viability against 650 µM hydrogen peroxide-induced hepatotoxicity. CCA treatment attenuated reactive oxygen species generation and lipid peroxidation in addition to increasing cellular glutathione level in cultured hepatocytes. To validate the underlying mechanism, antioxidant and phase II detoxifying enzyme expressions, which are mediated by NF-E2-related factor 2 (Nrf2) activation, were analyzed and CCA treatment was found to increase the expression of superoxide dismutase-1 (SOD-1), glutathione reductase (GR), heme oxygenase-1 (HO-1), and NAD(P)H:quinine oxidoreductase 1 (NQO1). CCA treatment resulted in increased Nrf2 nuclear translocation. The phosphorylation of extracellular regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) by CCA treatment contributed to Nrf2 activation. Pharmacological blockade of ERK, JNK, and p38 MAPK revealed that SP600125 (JNK inhibitor) and PD98059 (ERK inhibitor) treatment reduced Nrf2 translocation into the nucleus while SB203580 (p38 inhibitor) exhibited weak inhibition. Collectively, CCA protects liver cells against hydrogen peroxide-induced injury and this ability is attributed to the induction of antioxidants and phase II detoxifying enzymes that are mediated by Nrf2 translocation via JNK/ERK signaling.  相似文献   

2.
Pancreatic β‐cell death or dysfunction mediated by oxidative stress underlies the development and progression of diabetes mellitus (DM). In this study, we evaluated the effect of lentinan (LNT), an active ingredient purified from the bodies of Lentinus edodes, on pancreatic β‐cell apoptosis and dysfunction caused by streptozotocin (STZ) and the possible mechanisms implicated. The rat insulinoma cell line INS‐1 were pre‐treated with the indicated concentration of LNT for 30 min. and then incubated for 24 hrs with or without 0.5 mM STZ. We found that STZ treatment causes apoptosis of INS‐1 cells by enhancement of intracellular reactive oxygen species (ROS) accumulation, inducible nitric oxide synthase (iNOS) expression and nitric oxide release and activation of the c‐jun N‐terminal kinase (JNK) and p38 mitogen‐activated protein kinase (MAPK) signalling pathways. However, LNT significantly increased cell viability and effectively attenuated STZ‐induced ROS production, iNOS expression and nitric oxide release and the activation of JNK and p38 MAPK in a dose‐dependent manner in vitro. Moreover, LNT dose‐dependently prevented STZ‐induced inhibition of insulin synthesis by blocking the activation of nuclear factor kappa beta and increasing the level of Pdx‐1 in INS‐1 cells. Together these findings suggest that LNT could protect against pancreatic β‐cell apoptosis and dysfunction caused by STZ and therefore may be a potential pharmacological agent for preventing pancreatic β‐cell damage caused by oxidative stress associated with diabetes.  相似文献   

3.
Ketoprofen is widely used to alleviate pain and inflammation in clinical medicine; however, this drug may cause oxidative stress and lead to gastrointestinal (GI) ulcers. We previously reported that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in protecting cells against reactive oxygen species, and it facilitates the prevention of ketoprofen-induced GI mucosal ulcers. Recent reports suggested that Nrf2 becomes unstable in the absence of DJ-1/PARK7, attenuating the activity of Nrf2-regulated downstream antioxidant enzymes. Thus, increasing Nrf2 translocation by DJ-1 may represent a novel means for GI protection. In vitro, caffeic acid increases the nuclear/cytosolic Nrf2 ratio and the mRNA expression of the downstream antioxidant enzymes, ϒ-glutamyl cysteine synthetase, glutathione peroxidase, glutathione reductase, and heme oxygenase-1, by activating the JNK/p38 pathway in Int-407 cells. Moreover, knockdown of DJ-1 also reversed caffeic acid-induced nuclear Nrf2 protein expression in a JNK/p38-dependent manner. Our results also indicated that treatment of Sprague–Dawley rats with caffeic acid prior to the administration of ketoprofen inhibited oxidative damage and reversed the inhibitory effects of ketoprofen on the antioxidant system and DJ-1 protein expression in the GI mucosa. Our observations suggest that DJ-1 plays an important role in caffeic acid-mediated protection against ketoprofen-induced oxidative damage in the GI mucosa.  相似文献   

4.
5.
A large number of reactive oxygen species (ROS) aggravate cerebral damage after ischaemia/reperfusion (I/R). Glutathione (GSH), thioredoxin (Trx) and nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) represent three major antioxidant systems and play vital roles in affecting each other in eliminating ROS. Identification of drugs targeting triple antioxidant systems simultaneously is vital for inhibiting oxidative damage after cerebral I/R. This study investigated the protective effect of safflower extract and aceglutamide (SAAG) against cerebral I/R injury through modulating multiple antioxidant systems of GSH, Trx and Nrf2 and identified each role of its component acegluatminde (AG) and safflower extract (SA) on these systems. Safflower extract and aceglutamide and its two components decreased neurological deficit scores, infarction rate, apoptosis and oxidative damage after cerebral I/R while enhanced cell viability, decreased reactive oxygen species and nitric oxide level in H2O2‐induced PC12 cell model. Importantly, compared to its two components, SAAG demonstrated more effective enhancement of GSH, Nrf2 and Trx systems and a better protection against cerebral I/R injury. The enhanced antioxidant systems prevented ASK1 activation and suppressed subsequent p38 and JNK cascade‐mediated apoptosis. Moreover, inhibition of Trx and Nrf2 systems by auranofin and ML385 abolished SAAG‐mediated protection, respectively. Thus, enhanced triple systems by SAAG played a better protective role than those by SA or AG via inhibition of ASK1 cascades. This research provided evidence for the necessity of combination drugs from the perspective of multiple antioxidant systems. Furthermore, it also offers references for the study of combination drugs and inspires novel treatments for ischaemic stroke.  相似文献   

6.
Heme oxygenase-1 (HO-1) is known as an oxidative stress protein that is up-regulated by various stimuli. HO-1 has been shown to protect cells against oxidative damage. Cigarette smoke is a potential inflammatory mediator that causes chronic obstructive pulmonary disease and asthma. In this study, we report that cigarette smoke particle-phase extract (CSPE) is an inducer of HO-1 expression mediated through various signaling pathways in human tracheal smooth muscle cells (HTSMCs). CSPE-induced HO-1 protein, mRNA expression, and promoter activity were attenuated by pretreatment with a ROS scavenger (N-acetyl-l-cysteine) and inhibitors of c-Src (PP1), NADPH oxidase [diphenylene iodonium chloride (DPI) and apocynin (APO)], MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNAs for Src, p47phox, NOX2, p42, p38, JNK2, or NF-E2-related factor 2 (Nrf2). CSPE-stimulated translocation of p47phox and Nrf2, ROS production, and NADPH oxidase activity was attenuated by transfection with siRNAs for Src, p47phox, and NOX2 or pretreatment with PP1, DPI, or APO. Furthermore, CSPE-induced NOX2, c-Src, and p47phox complex formation was revealed by immunoprecipitation using an anti-NOX2, anti-p47phox, or anti-c-Src Ab followed by Western blot against anti-NOX2, anti-p47phox, or anti-c-Src Abs. These results demonstrate that CSPE-induced ROS generation is mediated through a c-Src/NADPH oxidase/MAPK pathway and in turn initiates the activation of Nrf2 and ultimately induces HO-1 expression in HTSMCs.  相似文献   

7.
AMPK/Nrf2 signaling regulates multiple antioxidative factors and exerts neuroprotective effects. Emodin is one of the main bioactive components extracted from Polygonum multiflorum, a plant possessing important activities for human health and for treating a variety of diseases. This study examined whether emodin can activate AMPK/Nrf2 signaling and induce the expression of genes targeted by this pathway. In addition, the anti-neuroinflammatory properties of emodin in lipopolysaccharide (LPS)-stimulated microglia were examined. In microglia, the emodin treatment increased the levels of LKB1, CaMKII, and AMPK phosphorylation. Emodin increased the translocation and transactivity of Nrf2 and enhanced the levels of HO-1 and NQO1. In addition, the emodin-mediated expression of HO-1 and NQO1 was attenuated completely by an AMPK inhibitor (compound C). Moreover, emodin decreased dramatically the LPS-induced production of NO and PGE2 as well as the protein expression and promoter activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, emodin effectively inhibited the production of pro-inflammatory cytokines, TNF-α and IL-6, and reduced the level of IκBα phosphorylation, leading to the suppression of the nuclear translocation, phosphorylation, and transactivity of NF-κB. Emodin also suppressed the LPS-stimulated activation of STATs, JNK, and p38 MAPK. The anti-inflammatory effects of emodin were reversed by transfection with Nrf-2 and HO-1 siRNA and by a co-treatment with an AMPK inhibitor. These results suggest that emodin isolated from P. multiflorum can be used as a natural anti-neuroinflammatory agent that exerts its effects by inducing HO-1 and NQO1 via AMPK/Nrf2 signaling in microglia.  相似文献   

8.
Naringenin (NGN; 5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one; C15H12O5), a flavanone, is found in citrus fruits and has been viewed as an antioxidant and anti-inflammatory agent. NGN is a potent inducer of the nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulates the expression of heme oxygenase-1 (HO-1), an enzyme exhibiting both antioxidant and anti-inflammatory effects. The complete mechanism by which NGN exerts anti-inflammatory actions is not completely understood yet. Therefore, we investigated here whether NGN would be able to reduce the inflammation induced by paraquat (PQ) in SH-SY5Y cells. Additionally, we analyzed the mechanism associated with the NGN-induced anti-inflammatory effect. We found that a pretreatment with NGN at 80 µM for 2 h decreased the levels of pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in PQ-treated SH-SY5Y cells. The production of nitric oxide (NO·) and levels of cyclooxygenase-2 (COX-2) and of the inducible isoform of nitric oxide synthase (iNOS) were downregulated by NGN in the cells exposed to PQ. Moreover, NGN downregulated the activation of the nuclear factor-κB (NF-κB) in PQ-treated cells. The anti-apoptotic and anti-inflammatory effects promoted by NGN were abolished by ZnPP IX (a specific inhibitor of HO-1) or by knockdown of Nrf2 by small interfering RNA (siRNA). Therefore, NGN induced anti-inflammatory effects in PQ-treated SH-SY5Y cells by a mechanism associated with the Nrf2/HO-1 signaling pathway.  相似文献   

9.
Oxidative stress is important for the initiation and progression of cancers, which confers the cells with a survival advantage by inducing oxidative adaption and drug resistance. Therefore, developing strategies to promote oxidative stress-induced cytotoxicity could be important for cancer therapy. Herein, we found that H2O2-mediated oxidative stress increases TRPV2 expression in human hepatoma (HepG2 and Huh-7) cells. This occurred at the mRNA and protein levels in a dose-dependent manner. The significance of TRPV2 in promoting H2O2-induced cell death was demonstrated in gain and loss of function studies with overexpression and knockdown of TRPV2, respectively. Mechanistically, H2O2-induced cell death involves inhibition of pro-survival signaling proteins (Akt, Nrf2) and activation of pro-death signaling proteins (p38, JNK1). Overexpression of TRPV2 in H2O2-treated hepatoma cells aggravates the inhibition of Akt and Nrf2, while it enhances the activation of p38 and JNK1 at the early stage of cell death. Interestingly, increased expression of TRPV2 in HepG2 cells improved the efficacy of stress-associated chemicals to induce cell death. Our findings suggest that TRPV2 acts as an important enhancer for H2O2-induced cytotoxicity. This process occurred by the inhibition of Akt and Nrf2 as well as the early activation of p38 and JNK1. These findings have important implications for inhibition of oxidative adaption and drug resistance.  相似文献   

10.
11.
BackgroundMyeloid leukemia is associated with reduced serum zinc and increased intracellular zinc. Our previous studies found that zinc depletion by TPEN induced apoptosis with PML-RARα oncoprotein degradation in acute promyelocytic NB4 cells. The effect of zinc homeostasis on intracellular signaling pathways in myeloid leukemia cells remains unclear.ObjectiveThis study examined how zinc homeostasis affected MAPK and Akt/mTOR pathways in NB4 cells.MethodsWe used western blotting to detect the activation of p38 MAPK, JNK, ERK1/2, and Akt/mTOR pathways in NB4 cells stimulated with the zinc chelator TPEN. Whether the effects of TPEN on these pathways could be reversed by zinc or the nitric oxide donor sodium nitroprusside (SNP) was further explored by western blotting. We used Zinpyr-1 staining to assess the role of SNP on labile zinc levels in NB4 cells treated with TPEN. In additional, we evaluated expressional correlations between the zinc-binding protein Metallothionein-2A (MT2A) and genes related to MAPKs and Akt/mTOR pathways in acute myeloid leukemia (AML) based on the TCGA database.ResultsZinc depletion by TPEN activated p38 and JNK phosphorylation in NB4 cells, whereas ERK1/2 phosphorylation was increased first and then decreased. The protein expression levels of Akt and mTOR were downregulated by TPEN. The nitric oxide donor SNP promotes zinc release in NB4 cells under zinc depletion conditions. We further found that the effects of zinc depletion on MAPK and Akt/mTOR pathways in NB4 cells can be reversed by exogenous zinc supplementation or treatment with the nitric oxide donor SNP. By bioinformatics analyses based on the TCGA database, we demonstrated that MT2A expression was negatively correlated with the expression of JNK, and was positively correlated with the expression of ERK1 and Akt in AML.ConclusionOur findings indicate that zinc plays a critical role in leukemia cells and help understanding how zinc depletion induces apoptosis.  相似文献   

12.
13.
The biological activity of Mastixia arborea (MA) relates to inflammation, but the underlying mechanisms are largely unknown. We confirmed the anti-inflammatory effects of a methanol extract of MA extract on lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells and carrageenan-induced mice paw edema. The MA extract significantly inhibited nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and IL-6 production in LPS-stimulated RAW264.7 cells. In vitro expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was suppressed by the extract. The extract attenuated acute inflammatory responses in carrageenan-induced mice paw edema. A mechanism study indicated that translocation of the NF-κB (p65) subunit into the nucleus and phosphorylation of ERK and JNK were inhibited by the extract. These results indicate that the extract is an effective suppressor of the inflammatory response, blocking the phosphorylation of ERK and JNK and the translocation of NF-κB in macrophages, thereby producing an anti-inflammatory effect in vivo.  相似文献   

14.
Mercury is a potent environmental contaminant that exerts toxic effect on various vital organs in the human body. Recently, we isolated glycoprotein from Zanthoxylum piperitum DC (ZPDC), which has antioxidant and anticancer effects. In the present study, we determined the preventive effects of ZPDC glycoprotein on hepatic damage induced by mercury chloride (HgCl2). We evaluated the activities of lactate dehydrogenase (LDH), alanine aminotransferase (ALT), antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)], extracellular signal‐regulated kinase (ERK)1/2, p38 mitogen‐activated protein kinase (MAPK), cyclo‐oxygenase (COX‐2), inducible nitric oxide synthetase (iNOS), and activator protein (AP‐1) and the quantitative expressions of nuclear factor E2‐related factor (Nrf2), heme oxygenase (HO‐1), metallothionein (MT) and reduced glutathione (GSH) in mercury‐chloride‐exposed (50 μM and 10 mg/kg body weight) primary cultured hepatocytes and ICR mice, using biochemical assays, radioactivity and immunoblot analysis. The results demonstrated that ZPDC glycoprotein decreased the levels of LDH, ALT, HO‐1 and MT, whereas it increased the activities of hepatic antioxidant enzymes (SOD, CAT and GPx) and reduced GSH in mercury‐chloride‐exposed primary cultured hepatocytes. Also, it suppressed arachidonic acid release and expression of ERK, p38 MAPK, COX‐2, iNOS, AP‐1 and Nrf‐2 in primary cultured hepatocytes and ICR mice exposed to mercury chloride. Collectively, ZPDC glycoprotein may have potential applications to prevent hepatotoxicity induced by mercury chloride. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
16.
It has been widely accepted that astrocytes, play a role in regulating almost every physiological system. In the present study, we investigated the role of particulate matter (PM) in regulating activation of astrocytes. The glial cell strain C6 was cloned from a rat glioma which was induced by N-nitrosomethylurea. The C6 cells were plated at a density of 5 × 106 cells/10 cm diameter dish and incubated with different concentrations (0, 12, 25, 50, 100, 200, and 400 μg/mL) of PM for 24 h and different time (0, 1, 3, 6, 8,12, and 24 h) with 100 μg/mL at 37 °C. The study revealed that PM stimulated the expression of inducible nitric oxide synthase (iNOS) as well as the production of IL-1β in a dose- and time-dependent manner. Furthermore, activation of JAK2/STAT3 and p38/JNK/ERK MAPKs was found in astrocytes following PM treatment. Blockage of JAK and p38/JNK/ERK MAPKs with their specific inhibitors, AG490, SB202190, SP600125 and U0126 significantly reduced PM-induced iNOS expression and IL-1β production. In addition, it was demonstrated that inhibition of p38, JNK and JAK prevented STAT3 tyrosine phosphorylation induced by PM, while blocking ERK did not. MAPKs (p38 and JNK) could regulate tyrosine STAT3 phosphorylation, which suggested that the JAK2/STAT3 pathway might be the downstream of p38/JNK MAPK pathways.  相似文献   

17.
The underlined effects of diallyl sulfide (DAS) against CCL4‐induced oxidative, inflammatory, and apoptotic acute hepatic damage were assessed. Administration of DAS (50, 100, and 200 mg/kg) along with CCL 4 effectively mitigated serum aspartate aminotransferase, alanine aminotransferase activities, MDA, TNF‐α, IL‐1β, and MCP‐1 levels, as well as significantly restored HO‐1, GSH levels and SOD activity in liver tissues compared with those in rats treated with CCL 4. Moreover, DAS inhibited CCL 4‐induced increase of liver NF‐κB (p65), Bax, p38 MAPK, and JNK protein expression. In addition, DAS accelerated protein expression of Nrf2 and Bcl‐2. The hepatoprotective properties of DAS were further confirmed by the reduced severity of hepatic damage as demonstrated by histopathological findings. In conclusion, DAS achieved its protective potential against CCL4‐induced hepatotoxicity through antiapoptotic activity, as well as the synchronized modulation of NF‐κB and Nrf2 for the favor of antioxidant/anti‐inflammatory effects via suppression of the upstream stress‐activated MAPKs pathways.  相似文献   

18.
Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium   总被引:5,自引:0,他引:5  
Vascular endothelial cells respond to nitric oxide by activating MAPK pathways and upregulating stress-activated proteins such as gamma-glutamylcysteine synthetase (gamma-GCS) and heme oxygenase-1 (HO-1). Since consensus sequences for the antioxidant response element (ARE) are found in the promoters of the gamma-GCS and HO-1 genes, we examined nuclear translocation of Nrf2, a CNC-bZIP protein which binds to and activates the ARE. We found a dramatic increase in Nrf2 nuclear translocation 1-8h following the nitric oxide donor spermine NONOate. Translocation was inhibited by pretreatment of cells with N-acetylcysteine suggesting involvement of an oxidative mechanism in this response. Translocation was also blocked by PD 98059 and SB 203580, inhibitors of ERK and p38 pathways, respectively. In addition to effects on Nrf2 subcellular localization, spermine NONOate increased Nrf2 protein levels by a mechanism which was inhibited by PD 98059. Pretreatment with N-acetylcysteine, PD 98059, and SB 203580 decreased HO-1 upregulation in spermine NONOate-treated cells. These results suggest that ERK and p38 pathways may regulate nitric oxide-mediated adaptive responses in vascular endothelium via translocation of Nrf2 and activation of the ARE.  相似文献   

19.
20.
Quercetin, one of the most abundant dietary flavonoids, is reported to have protective function against various hepatotoxicant-induced hepatotoxicity. The present study aims to investigate the critical role of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidative signaling pathway in the protection of quercetin against hepatotoxicity. Quercetin prevented the cytotoxicity induced by a variety of hepatotoxicants including clivorine (Cliv), acetaminophen (APAP), ethanol, carbon tetrachloride (CCl4), and toosendanin (TSN) in human normal liver L-02 cells. Quercetin induced the nuclear translocation of Nrf2, along with the increased expression of the antioxidant responsive element (ARE)-dependent genes like catalytic or modify subunit of glutamate-cysteine ligase (GCLC/GCLM), and heme oxygenase-1 (HO-1). In addition, the HO-1 inhibitor zinc protoporphyrin (ZnPP) and the GCL inhibitor L-buthionine-(S,R)-sulfoximine (BSO) both reduced the hepatoprotection induced by quercetin. Quercetin had no effect on kelch-like ECH-associated protein-1(Keap1) expression, but molecular docking results indicated the potential interaction of quercetin with the Nrf2-binding site in Keap1 protein. Quercetin increased the expression of p62, and p62 siRNA decreased quercetin-induced hepatoprotection. Quercetin induced the activation of c-Jun N-terminal kinase (JNK) in hepatocytes. JNK inhibitor SP600125 and JNK siRNA both reduced quercetin-induced hepatoprotection. SP600125 and JNK siRNA decreased the increased p62 expression induced by quercetin. In addition, SP600125 also decreased the increased mRNA and protein expression of GCLC, GCLM, and HO-1 induced by quercetin. Taken together, our present study demonstrates that quercetin prevents hepatotoxicity by inducing p62 expression, inhibiting the binding of Keap1 to Nrf2, and thus leading to the increased expression of antioxidative genes dependent on Nrf2. Meanwhile, our study indicates that JNK plays some regulation in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号