首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant fuculose 1-phosphate aldolase (FucA) from E. coli has been immobilized by multipoint covalent attachment to glyoxal-agarose gels. Experiments, varying the main parameters that control the immobilization process (surface density of aldehyde groups, temperature, pH), were carried out. An immobilization yield of 80–90% and FucA retained activity on immobilized derivative of 10–20% can be achieved when pH?10, 20°C and 200?µmoles?cm?3 of aldehyde groups was used. The observed activity loss in the immobilization process might be related to the fact that the complex quaternary structure of the enzyme could not be maintained. A short contact-time enzyme support is required to obtain high ratio of active to total immobilized enzyme.

A highly loaded derivative of immobilized FucA (65?AU?cm?3 of support) has been prepared to use in aldol condensation reactions. Reactions catalyzed by these aldolases involve the use of non-conventional media because of substrate solubility. For instance, the condensation of dihydroxyacetone phosphate (DHAP) and Z-amino-propanal, Z-(R)-alaninal and Z-(S)- alaninal in highly concentrated water-in-oil emulsions gave synthetic yields of 40, 25 and 29% respectively.  相似文献   

2.
Immobilization of lipases involves many levels of complications relating to the structure of the active site and its interactions with the immobilization support. Interaction of the so called hydrophobic ‘lid’ with the support has been reported to affect synthetic activity of an immobilized lipase. In this work we evaluate and compare the synthetic activity of lipases from different sources immobilized on different kinds of supports with varying hydrophobicity. Humicola lanuginosa lipase, Candida antarctica lipase B and Rhizomucor miehei lipase were physically adsorbed onto two types of hydrophobic carriers, namely hydrophilic carriers with conjugated hydrophobic ligands, and supports with base matrix hydrophobicity. The prepared immobilized enzymes were used for acylation of n-butanol with oleic acid as acyl donor in iso-octane with variable water content (0–2.8%, v/v) as reaction medium. Enzyme activity and effect of water on the activity of the immobilized derivatives were compared with those of respective soluble lipases and a commercial immobilized lipase Novozyme 435. Both R. miehei and H. lanuginosa immobilized lipases showed maximum activity at 1.39% (v/v) added water concentration. Sepabeads, a methacrylate based hydrophilic support with conjugated octadecyl chain showed highest immobilized esterification (synthetic) activity for all three enzymes, and of the three R. miehei lipase displayed maximum esterification activity comparable to the commercial enzyme.  相似文献   

3.
《Process Biochemistry》2008,43(2):125-131
Tyrosinase from mushroom was immobilized as a cross-linked enzyme aggregate (CLEA) via precipitation with ammonium sulfate and cross-linking with glutaraldehyde. The effects of precipitation and cross-linking on CLEA activity were investigated and the immobilized tyrosinase was characterized. Sixty percent ammonium sulfate saturation and 2% glutaraldehyde were used; a 3-h cross-linking reaction at room temperature, at pH 7.0 was performed; particle sizes of the aggregates were reduced; consequently, 100% activity recovery was achieved in CLEAs with enhanced thermal and storage stabilities. Slight changes in optimum pH and temperature values of the enzyme were recorded after immobilization. Although immobilization did not affect Vmax, substrate affinity of the enzyme increased. Highly stable CLEAs were also prepared from crude mushroom tyrosinase with 100% activity recovery.  相似文献   

4.
Isomaltulose is a structural isomer of sucrose commercially used in food industries. In this work, recombinant Escherichia coli producing sucrose isomerase (SIase) was used to convert sucrose into isomaltulose. To develop an economical industrial medium, untreated cane molasses (10.63 g l?1), yeast extract (25.93 g l?1), and corn steep liquor (10.45 g l?1) were used as main culture compositions for SIase production. The relatively high SIase activity (14.50 ± 0.11 U mg DCW?1) was obtained by the recombinant cells. To the best of our knowledge, this is the first investigation on SIase production by engineered E. coli using untreated cane molasses. The recombinant E. coli cells expressing the SIase gene were immobilized in calcium alginate gel in order to improve the efficiency of recycling. The immobilization was most effective with 2 % (w/v) sodium alginate and 3 % (w/v) calcium chloride. The optimal initial biomass for immobilization was 20 % (w/v, wet wt.), with a hardening time of 8 h for cell immobilization. The immobilized E. coli cells exhibited good stability for 30 batches with the productivity of 0.45 g isomaltulose g pellet?1 h?1. A continuous isomaltulose formation process using a column reactor remained stable for 40 days with 83 ± 2 % isomaltulose yield, which would be beneficial for economical production of isomaltulose.  相似文献   

5.
Li  Ziang  Cabana  Hubert  Lecka  Joanna  Brar  Satinder K.  Galvez  Rosa  Bellenger  Jean-Philippe 《Biodegradation》2021,32(5):563-576

Unconventional oils such as diluted bitumen from oil sands differs from most of conventional oils in terms of physiochemical properties and PAHs composition. This raises concerns regarding the effectiveness of current remediation strategies and protocols originally developed for conventional oil. Here we evaluated the efficiency of different biotreatment approaches, such as fungi inoculation (bioaugmentation), sludge addition (bioaugmentation/biostimulation), perennial grasses plantation (phytoremediation) and their combinations as well as natural attenuation (as control condition), for the remediation of soil contaminated by synthetic crude oil (a product of diluted bitumen) in laboratory microcosms. We specifically monitored the PAHs loss percentage (alkylated PAHs and unsubstituted 16 EPA Priority PAHs), the residue of PAHs and evaluated the ecotoxicity of soil after treatment. All treatments were highly efficient with more than?~?80% of ∑PAHs loss after 60 days. Distinctive loss efficiencies between light PAHs (≤?3 rings,?~?96% average loss) and heavy PAHs (4–6 rings,?~?29% average loss) were observed. The lowest average PAHs residue (0.10?±?0.02 mg·kg?1, for an initial concentration of 0.29?±?0.12 mg·kg?1) was achieved with the “sludge—plants (grasses)” combination. Sludge addition was the only treatment that achieved significantly lower ecotoxicity (3%?±?4% of growth inhibition of L. sativa) than the control (natural attenuation, 13%?±?4% of inhibition). Sludge addition, grasses plantation and “sludge—fungi combination” treatments could result in lower PAH exposure (than other treatments) in post-treated soil when using the Canadian Soil Quality Guidelines for the protection of environmental and human health for potentially carcinogenic and other PAHs.

  相似文献   

6.
This paper describes in detail the selection and optimization of immobilized lipases for enhanced regioselective acylation of glucose into glucose monolaurate (GlcML). Initially, nature of biocatalyst, immobilization approach, reaction media, glucose, and lauric acid concentration were screened out. Finally, lipases from Rhizopus arrhizus immobilized on dead mycelia were investigated under various reaction conditions (Temperature, shaking speed, enzyme dose, and water content) following a fully rotatable central composite design (FRCCD) to optimize the activity of lipases. The immobilized lipases-based biocatalysts in the presence of polar solvents (tertiary alcohols) and higher concentrations of substrates i.e. glucose and lauric acid (100 and 300?mmol?L?1, respectively) offered conversion rate of 1.5 mmolmin?1?L?1. Moreover, optimization of reaction conditions revealed that 162.5 lipase units/100mL at 31.25?°C, 3% water content, and 105?RPM shaking speed enhanced the conversion rate by 0.5 mmolmin?1?L?1 rendering the reaction more economical. Hence, lipases-based immobilized biocatalysts may provide an intelligent and green choice for commercial scale synthesis of GlcML for food and pharmaceutical industries.  相似文献   

7.
Abstract

Present study was undertaken to develop cross-linked enzyme aggregate (CLEA)of alkaline serine proteases (sp) from Pythium myriotylum (Pm), a necrotrophic oomycete reported to considerably secrete serine proteases. Among various precipitants screened for spPm1-CLEA preparation, ammonium sulfate at 80% saturation (w/v) yielded 100% activity recovery and retention of spherical morphology as observed by SEM analysis. Addition of glutaraldehyde as cross-linker at 1% (v/v) concentration with optimized ammonium sulfate concentration for 1?hour at 100?rpm yielded 100% activity recovery of spPm1-CLEA from 8-day old P. myriotylum culture filtrate. Addition of BSA (10?mg/ml) to CLEA cross-linking reaction mix reduced CLEA size from the range of 1.82–1.19?µm to 394–647?nm. spPm1-CLEA preparations retained 100% activity at temperature of 80?°C and pH 12.0 signifying their potential commercial applications. In terms of kinetic parameters, present process enhanced kinetic parameters as revealed by 1.67?U.mg?1 specific activity, Km of 0.062?mM and Vmax of 0.145?µmol.min?1.mg?1 for the spPm1-CLEA compared to 0.288?U.mg?1 specific activity, Km of 0.060?mM and Vmax of 0.20?µmol.min?1.mg?1 determined for the free spPm1 enzyme. Study has successfully demonstrated the concept of CLEA in enhancing spPm1 stability and the results so generated can be translated in future towards development of robust biocatalysts.  相似文献   

8.
Biodiesel is methyl and ethyl esters of long-chain fatty acids produced from vegetable oils or animal fats. Lipase enzymes have occasionally been used for the production of this biofuel. Recently, biodiesel production using immobilized lipase has received increased attention. Through enhanced stability and reusability, immobilized lipase can contribute to the reduction of the costs inherent to biodiesel production. In this study, methanol-tolerant lipase M37 from Photobacterium lipolyticum was immobilized using the cross-linked enzyme aggregate (CLEA) method. Lipase M37 has a high lysine content (9.7%) in its protein sequence. Most lysine residues are located evenly over the surface of the protein, except for the lid structure region, which makes the CLEA preparation yield quite high (~93%). CLEA M37 evidences an optimal temperature of 30oC, and an optimal pH of 9-10. It was stable up to 50°C and in a pH range of 4.0-11.0. Both soluble M37 and CLEA M37 were stable in the presence of high concentrations of methanol, ethanol, 1-propanol, and nbutanol. That is, their activities were maintained at solvent concentrations above 10% (v/v). CLEA M37 could produce biodiesel from olive oil and alcohols such as methanol and ethanol. Additionally, CLEA M37 generated biodiesel via both 2-step methanol feeding procedures. Considering its physical stability and reusability, CLEA M37 may potentially be used as a catalyst in organic synthesis, including the biodiesel production reaction.  相似文献   

9.
Abstract

Porcine pancreatic lipase (PPL) and Candida cylindracea lipase (CCL) were immobilized on Celite and Amberlite IRA 938 by deposition from the aqueous solution by the addition of hexane. The influence of the immobilization on the activities of the immobilized lipase derivatives has been studied. The immobilized lipases were used in synthesis of pentyl isovalerates. Various reaction parameters affecting the synthesis of pentyl isovalerates were investigated. The reaction rates were compared with the rates of esterification with free lipases. The immobilized lipases were found to be very effective in the esterification reaction. The lipases immobilized on Celite 545 exhibited better operational stabilities than that of immobilized on Amberlite IRA‐938.  相似文献   

10.

Currently, much attention is paid to technologies which can be drivers of the circular economy across different sectors, in particular, to develop technologies for utilization or reusability of biocompatible materials from industrial waste. One of such is the milk whey, which is a cheap biobased raw material, the disposal of which is a major problem for the dairy industry. Our proposed and investigated technology is based on a continuous exploitation of the whey combining microbiology and biotechnology. Primarily, whey was used as a nutrition source for the cultivation of Kluyveromyces lactis with the aim to produce the targeted biocatalyst—lipase. During cultivation, the whey was transformed into the hydrolyzed form, which was further successfully applied as a protein feeder (external linker) for immobilization of lipase by cross-linked enzyme aggregate (CLEA) method. The first time use of whey as a co-feeder for immobilization of enzymes by CLEA method has shown promising results and increased the stability of lipases for temperature and organic solvents. Hydrolysis of rapeseed oil catalyzed with immobilized derivatives was obtained with 45–96% efficiency at non-optimized conditions. Additionally, the determined kinetic parameters indicated that the rate of p-nitrophenyl palmitate hydrolysis was not changed drastically after immobilization.

  相似文献   

11.
A new method for monitoring reactions catalyzed by an immobilized enzyme, cross-linked penicillin acylase aggregates (PA CLEA), is suggested. Appropriate chromogenic substrates for spectrophotometric assay of catalytic activity of immobilized enzyme were chosen and their kinetic parameters determined. Active sites in PA CLEA preparations were titrated by the suggested method; it is shown that almost all active sites are retained during immobilization. This method is characterized as highly expressive, simple, and precise and may be used for control of PA immobilization efficiency as well as for study of operational, thermal, and pH stability of immobilized enzyme preparations.  相似文献   

12.
Ca-polygalacturonate is a demethoxylated component of pectins which are constitutive of plant root mucigel. In order to define the role of root mucigel in myrosinase immobilization and activity at root level, a myrosinase enzyme which had been isolated from Sinapis alba seeds was immobilized into Ca-polygalacturonate. The activity profile for the immobilized and free enzyme was evaluated using the pH-Stat method as a function of time, temperature, and pH. The Michaelis-Menten kinetic parameters change between the immobilized (V max ?=?127?±?13 U mg?1 protein; K M ?=?6.28?±?0.09?mM) and free (V max ?=?17?±?1 U mg?1 protein; K M ?=?0.96?±?0.01?mM) forms of myrosinase, probably due to conformational changes involving the active site as a consequence of enzyme immobilization. Immobilized enzyme activity evaluated as a function of different substrates gave the highest value with nasturtin, the glucosinolate that is typical of several brassicaceae plant roots containing the glucosinolate-myrosinase defensive system. No feedback regulation mechanism was found in the presence of an excess of enzymatic reaction products (i.e. allyl isothiocyanate or sulphate). The high enzyme immobilization yield into Ca-polygalacturonate and its activity preservation under different conditions suggest that the enzyme released by plants at root level could be entrapped in root mucigel in order to preserve its activity.  相似文献   

13.
Flavonoids are polyphenolic secondary plant metabolites which possess antioxidant and anti-inflammatory properties. Besides, they have been shown to exhibit increased antioxidant properties in their polymerized form. Catechins are one of the attractive class of flavonoids which belong to the group of flavan-3-ols. Polymerization of catechins have been investigated in numerous studies indicating the requirement of certain amount of organic solvent to provide the solubility of the monomer. However, many research projects have been conducted recently to replace toxic organic contaminants of the processes with environmentally friendly solvents. In this aspect, deep eutectic solvents (DESs) that are regarded as “green solvents” have been studied extensively in various enzyme catalyzed reactions. In the present study, we focused on establishing a green pathway for laccase catalyzed polycatechin synthesis by replacing organic solvent content with DESs as green solvents. For this aim, various parameters were investigated, such as DES types and concentrations laccase amount and reaction time. Consequently, the highest molecular weight polycatechin was obtained using 5% (v/v) B–M, 125?U laccase in 1?hr of reaction time, at 30°C, as 4,354?±?678?g?mol?1. Corresponding X/XO inhibitory activity and superoxide radical scavenging activities were achieved as, 59 and 50%, respectively.  相似文献   

14.
Fine magnetic particles (ferrofluid) were prepared from a co-precipitation method by oxidation of Fe2+ with nitrite. The particles were activated with (3-aminopropyl)triethoxysilane in toluene and the activated particles were combined with some enzymes by using glutaraldehyde. Enzyme-immobilized magnetic particles were between 4-70 nm and the size could be changed corresponding to the ratio of the amount of Fe2+ to that of nitrite. In the immobilization of β-glucosidase, activity yield was 83% and 168 mg protein was immobilized per g magnetite. Other enzymes or proteins could be immobilized at the level between about 70 and 200mg/g support. Immobilized β-glucosidase was stable at 4°C. Magnetic particles immobilized with β-glucosidase responded quickly to the magnetic field and “ON-OFF” control of the enzyme reaction was possible.  相似文献   

15.
Aims: The feasibility of the continuous production of a valuable bioplastic raw material, namely 1,3‐propanediol (1,3‐PDO) from biodiesel by‐product glycerol, using immobilized cells was investigated. In addition, the effect of hydraulic retention time (HRT) was also analysed. Methods and Results: Ceramic balls and ceramic rings were used for the immobilization of a locally isolated strain; Klebsiella pneumoniae (GenBank no. 27F HM063413 ). HRT of 1 h is the best one in terms of volumetric production rate (g 1,3‐PDO l?1 h?1). The results indicated that ceramic‐based cell immobilization achieved a 2‐fold higher production rate (10 g 1,3‐PDO l?1 h?1) in comparison with suspended cell system (4·9 g 1,3‐PDO l?1 h?1). Conclusions: Continuous cultures with immobilized cells revealed that 1,3‐PDO production was more effective and more stable than suspended culture systems. Furthermore, cell immobilization had also obvious benefits especially for resistance of the production for extreme conditions (high organic loading rates, cell washouts). The results were important for understanding the significance of continuous immobilization process among other well‐known 1,3‐PDO fermentation processes. Significance and Impact of the Study: This work is a promising process for further studies, as the immobilized micro‐organism was able to reach high volumetric production rates at short HRT, it has an important role in tolerating and converting glycerol during fermentation. Therefore, HRT is a very significant operational parameter (P value <0·05) directly affecting the bioreactor performance and production rate.  相似文献   

16.
Lipase from Rhizopus oryzae (ROL) was immobilized as crosslinked enzyme aggregate (CLEA) via precipitation with ammonium sulfate and simultaneous crosslinking with glutaraldehyde. The optimum conditions of the immobilization process were determined. Lipase CLEAs showed a twofold increase in activity when Tween 80‐pretreated lipase was used for CLEA preparation. CLEAs were shown to have several advantages compared to free lipase. CLEAs were more stable at 50°C and 60°C as well as for a wide range of pH. After incubation at 50°C, CLEA showed 74% of initial activity whereas free enzyme was totally inactivated. Reduction of Schiff bases has been performed for the first time in the CLEA preparation process significantly improving the chemically modified CLEAs' reusability, thus providing an enzyme with high potential for recycling even under aqueous reaction conditions where enzyme leakage is, in general, one of the major problems. The CLEA retained 91% activity after 10 cycles in aqueous medium. The immobilized enzyme was used for kinetic resolution reactions. Results showed that immobilization had an enhancing effect on the conversion (c) as well as on the enantiomeric ratio (E). ROL CLEA displayed five times higher enantioselectivity for the hydrolysis of (R,S)‐1‐phenylethyl acetate and likewise 1.5 times higher enantioselectivity for the transesterification of racemic (RS)‐1‐phenylethanol with vinylacetate. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 937–945, 2012 This article was published online on June 26, 2012. An edit was subsequently requested. This notice is included in the online and print versions to indicate that both have been corrected [27 June 2012].  相似文献   

17.
In this study porcine pancreatic lipase (PPL) was covalently immobilized on cross-linked polyvinyl alcohol (PVA) in organic media in the presence of fatty acid additives in order to improve its immobilized activity. The effects of fatty acid additions to the immobilization media were investigated choosing tributyrin hydrolysis in water and ester synthesis by immobilized PPL in n-hexane. Various fatty acids which are also the substrates of lipases in esterification reactions were used as active site protecting agents during the immobilization process in an organic solvent. The obtained results showed that covalent immobilization carried out in the presence of fatty acids as protective ligands improved the hydrolytic and esterification activity of immobilized enzyme. A remarkable increase in activity of the immobilized PPL was obtained when octanoic acid was used as an additive and the hydrolytic activity was increased from 5.2 to 19.2 μmol min−1 mg−1 as compared to the non-additive immobilization method. With the increase of hydrolytic activity of immobilized lipase in the presence of octanoic acid, in an analogous manner, the rate of esterification for the synthesis of butyl octanoate was also increased from 7.3 to 26.3 μmol min−1 g−1 immobilized protein using controlled thermodynamic water activities with saturated salt solutions. In addition, the immobilized PPL activity was maintained at levels representing 63% of its original activity value after 5 repeated uses. The proposed method could be adopted for a wide variety of other enzymes which have highly soluble substrates in organic solvent such as other lipases and esterases.  相似文献   

18.
Soybean seed coat peroxidase (SBP) was immobilized on various polyaniline-based polymers (PANI), activated with glutaraldehyde. The most reduced polymer (PANIG2) showed the highest immobilization capacity (8.2 mg SBP?g?1 PANIG2). The optimum pH for immobilization was 6.0 and the maximum retention was achieved after a 6-h reaction period. The efficiency of enzyme activity retention was 82%. When stored at 4°C, the immobilized enzyme retained 80% of its activity for 15 weeks as evidenced by tests performed at 2-week intervals. The immobilized SBP showed the same pH-activity profile as that of the free SBP for pyrogallol oxidation but the optimum temperature (55°C) was 10°C below that of the free enzyme. Kinetic analysis show that the Km was conserved while the specific Vmax dropped from 14.6 to 11.4 µmol min?1 µg?1, in agreement with the immobilization efficiency. Substrate specificity was practically the same for both enzymes. Immobilized SBP showed a greatly improved tolerance to different organic solvents; while free SBP lost around 90% of its activity at a 50% organic solvent concentration, immobilized SBP underwent only 30% inactivation at a concentration of 70% acetonitrile. Taking into account that immobilized HRP loses more than 40% of its activity at a 20% organic solvent concentration, immobilized SBP performed much better than its widely used counterpart HRP.  相似文献   

19.
We studied the modification of Immobead 150 support by either introducing aldehyde groups using glutaraldehyde (Immobead‐Glu) or carboxyl groups through acid solution (Immobead‐Ac) for enzyme immobilization by covalent attachment or ion exchange, respectively. These two types of immobilization were compared with the use of epoxy groups that are now provided on a commercial support. We used Aspergillus oryzae β‐galactosidase (Gal) as a model protein, immobilizing it on unmodified (epoxy groups, Immobead‐Epx) and modified supports. Immobilization yield and efficiency were tested as a function of protein loading (10–500 mg g?1 support). Gal was efficiently immobilized on the Immobeads with an immobilization efficiency higher than 75% for almost all supports and protein loads. Immobilization yields significantly decreased when protein loadings were higher than 100 mg g?1 support. Gal immobilized on Immobead‐Glu and Immobead‐Ac retained approximately 60% of its initial activity after 90 days of storage at 4°C. The three immobilized Gal derivatives presented higher half‐lifes than the soluble enzyme, where the half‐lifes were twice higher than the free Gal at 73°C. All the preparations were moderately operationally stable when tested in lactose solution, whey permeate, cheese whey, and skim milk, and retained approximately 50% of their initial activity after 20 cycles of hydrolyzing lactose solution. The modification of the support with glutaraldehyde provided the most stable derivative during cycling in cheese whey hydrolysis. Our results suggest that the Immobead 150 is a promising support for Gal immobilization. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:934–943, 2018  相似文献   

20.
Discovery of new protease inhibitors may result in potential therapeutic agents or useful biotechnological tools. Obtainment of these molecules from natural sources requires simple, economic, and highly efficient purification protocols. The aim of this work was the obtainment of affinity matrices by the covalent immobilization of dipeptidyl peptidase IV (DPP-IV) and papain onto cellulose membranes, previously activated with formyl (FCM) or glyoxyl groups (GCM). GCM showed the highest activation grade (10.2?µmol aldehyde/cm2). We implemented our strategy for the rational design of immobilized derivatives (RDID) to optimize the immobilization. pH 9.0 was the optimum for the immobilization through the terminal α-NH2, configuration predicted as catalytically competent. However, our data suggest that protein immobilization may occur via clusters of few reactive groups. DPP-IV?GCM showed the highest maximal immobilized protein load (2.1?µg/cm2), immobilization percentage (91%), and probability of multipoint covalent attachment. The four enzyme-support systems were able to bind at least 80% of the reversible competitive inhibitors bacitracin/cystatin, compared with the available active sites in the immobilized derivatives. Our results show the potentialities of the synthesized matrices for affinity purification of protease inhibitors and confirm the robustness of the RDID strategy to optimize protein immobilization processes with further practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号