首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Asteraceae family has been broadly studied, but the values of genome size of only 3.5% of their species are known. To expand these data, we carried out a flow cytometric study of nuclear DNA content in a wide range of taxa of this family, filling gaps in some less studied groups. In addition, some chromosome counts have been performed (46 taxa, including the first one in two species and one subspecies). We provide genome size data for 167 taxa (184 accessions). Of these, data are new for 128 species and subspecies (141 accessions), 40 genera, three tribes (Barnadesieae, Gochnatieae and Nassauvieae) and two subfamilies (Barnadesioideae and Gochnatioideae). Most values (about 75%) are small or very small (1C ≤ 3.5 pg). The second reports on 17 species previously studied with other methods (i.e. first flow cytometric assessments) are also given. Finally, we contribute results for 22 species for which a first flow cytometric assessment has been published during the preparation of this article. The current data-set moves the percentage of coverage approximately from 3% to 4.7% at the specific level, from 6% to 11.6% at the generic level, from 34.9% to 41.9% at the tribal level and from 33% to 50% at the subfamily level.  相似文献   

2.
3.
This work describes an application of artificial neural networks on a small data set of sesquiterpene lactones (STLs) of three tribes of the family Asteraceae. Structurally different types of representative STLs from seven subtribes of the tribes Eupatorieae, Heliantheae and Vernonieae were selected as input data for self-organizing neural networks. Encoding the 3D molecular structures of STLs and their projection onto Kohonen maps allowed the classification of Asteraceae into tribes and subtribes. This approach allowed the evaluation of structural similarities among different sets of 3D structures of sesquiterpene lactones and their correlation with the current taxonomic classification of the family. Predictions of the occurrence of STLs from a plant species according to the taxa they belong to were also performed by the networks. The methodology used in this work can be applied to chemosystematic or chemotaxonomic studies of Asteraceae.  相似文献   

4.
With the present work, we aim to provide a better understanding of chromosome evolutionary trends among southern Brazilian species of Iridoideae. Chromosome numbers and genome sizes were determined for 21 and 22 species belonging to eight genera of Tigridieae and two genera of Trimezieae, respectively. The chromosome numbers of nine species belonging to five genera are reported here for the first time. Analyses of meiotic behaviour, tetrad normality and pollen viability in 14 species revealed regular meiosis and high meiotic indexes and pollen viability (> 90%). The chromosome data obtained here and compiled from the literature were plotted onto a phylogenetic framework to identify major events of chromosome rearrangements across the phylogenetic tree of Iridoideae. Following this approach, we propose that the ancestral base chromosome number for Iridoideae is x = 8 and that polyploidy and dysploidy events have occurred throughout evolution. Despite the variation in chromosome numbers observed in Tigridieae and Trimezieae, for these two tribes our data provide support for an ancestral base number of x = 7, largely conserved in Tigridieae, but a polyploidy event may have occurred prior to the diversification of Trimezieae, giving rise to a base number of x2 = 14 (detected by maximum‐parsimony using haploid number and maximum likelihood). In Tigridieae, polyploid cytotypes were commonly observed (2x, 4x, 6x and 8x), whereas in Trimezieae, dysploidy seems to have been the most important event. This feature is reflected in the genome size, which varied greatly among species of Iridoideae, 4.2‐fold in Tigridieae and 1.5‐fold in Trimezieae. Although no clear difference was observed among the genome sizes of Tigridieae and Trimezieae, an important distinction was observed between these two tribes and Sisyrinchieae, with the latter possessing the smallest genome sizes in Iridoideae. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 177 , 27–49.  相似文献   

5.
TRIBAL INTERRELATIONSHIPS OF THE ASTERACEAE   总被引:3,自引:0,他引:3  
Abstract— A cladistic analysis involving 27 tribes and subtribes of Asteraceae and 81 characters is presented. The terminal taxa are mainly those of present tribal classification, though some apparently poly- and paraphyletic tribes, notably the Mutisieae and the Inuleae, have been represented by sub-tribal taxa. Characters are assembled from all available sources. Corolla types, styles and stamens have provided many characters. The Lobeliaceae are used as an outgroup and are considered as the most probable sister group of the Asteraceae. There is a basal dichotomy in the family, the Mutisieae-Barnadesiinae being the monophyletic sister group of the remaining major, also monophyletic part of the family. The recent family division into two subfamilies about equal in size, the Cichorioideae and the Asteroideae, neither represents a basal dichotomy nor a sister group relationship within the Asteraceae. The Asteroideae are monophyletic and have their sister group within the paraphyletic Cichorioideae. Interrelationships among the cichorioid tribes are still unclear. The Lactuceae, Eremothamneae, Vernonieae and Liabeae may be one monophyletic group, and the Arctoteae, Carlineae, Echinopsideae and Cardueae another. The Mutisieae are a paraphyletic grade at the base of the family. Within the subfamily Asteroideae tribal interrelationships are also rather unclear. The Anthemideae and the Heliantheae sensu lato (including the Helenieae, Tageteae, Coreopsideae and all helenioid/helianthoid representatives sometimes placed in the Senecioneae) may be sister groups. The Heliantheae appear to be monophyletic and there is little support for the hypothesis that other tribes are derived from or have their sister group within the Heliantheae. The Astereae and the Eupatorieae may be sister groups, though a closer relationship between the Eupatorieae and the Heliantheae is possible. The Inuleae are a paraphyletic grade group at the base of the subfamily Asteroideae in the same way as the Mutiseae are a grade group at the base of the family.  相似文献   

6.
Forty-five sequences from members of all genera of Asteraceae indigenous to New Zealand and 50 published sequences representing the tribal diversity in the family were analyzed to assess the utility of ITS sequences to resolve phylogenetic relationships. Previous studies using chloroplast DNA sequences and morphology provided support for several clades in the Asteraceae, yet the relationships among some of these were uncertain. The results from ITS analysis were largely consistent with these earlier studies. The New Zealand species are included in at least six clades, most of these corresponding to recognized tribes. Our results have also clarified the tribal affinities of a few anomalous genera. Haastia, previously aligned with the Gnaphalieae or the Astereae, is nested in the Senecioneae. Centipeda, previously included in the Astereae or Anthemideae, emerges near the Heliantheae. The relationships of Abrotanella remain unresolved. Received August 8, 2001 Accepted November 6, 2001  相似文献   

7.
The sunflower family (Asteraceae) is the largest and the most diverse flowering plant family, comprising 24 000–30 000 species and 1600–1700 genera. In China, Asteraceae are also the largest family, with approximately 2336 indigenous species in 248 genera. In the past two decades, molecular phylogenetic analyses has contributed greatly to our understanding of the systematics of Asteraceae. Nevertheless, the large-scale analyses and knowledge about the relationships of Chinese Asteraceae at the generic level as a whole are far from complete due to difficulties in sampling. In this study, we presented a three-marker (rbcL, ndhF, and matK) phylogeny of Asteraceae, including 506 genera (i.e., approximately one-third of Asteraceae genera). The study sampled 200 Chinese genera (i.e., approximately 80% of Chinese Asteraceae genera). The backbones of the new phylogeny were largely congruent with earlier studies, with 13 subfamilies and 45 tribes recognized. Chinese Asteraceae were distributed in 7 subfamilies (Mutisioideae, Wunderlichioideae, Carduoideae, Pertyoideae, Gymnarrhenoideae, Cichorioideae, and Asteroideae) and 22 tribes (Mutiseae, Hyalideae, Cardueae, Pertyeae, Gymnarrheneae, Vernonieae, Cichorieae, Doroniceae, Senecioneae, Astereae, Anthemideae, Gnaphalieae, Calenduleae, Inuleae, Athroismeae, Helenieae, Coreopsideae, Neurolaeneae, Tageteae, Millieae, Eupatorieae, and Heliantheae). Chinese Asteraceae lacked 6 basal subfamilies and 23 tribes. Several previously ambiguous relationships were clarified. Our analyses also resolved some unplaced genera within Chinese Asteraceae. Finally, our phylogenetic tree was used to revise the classification for all genera of Chinese Asteraceae. In total, 255 genera, 22 tribes, and 7 subfamilies in China are recognized.  相似文献   

8.
Twenty-two chromosome counts of 19 taxa in the tribe Anthemideae of the family Asteraceae are reported from north-east Anatolia, Turkey. The taxa belong to the subtribes Achilleinae (four Achillea taxa), Anthemidinae (five Anthemis taxa), Artemisiinae (two Artemisia species), Leucantheminae (one Lecanthemum species), Matricariinae (two Tripleurospermum species) and Tanacetinae (five Tanacetum taxa). Six counts are new reports, seven are not consistent with previous counts, and the remainder are confirmations of very limited previous data. Most of the populations of Anthemideae studied have the basic number x  = 9, with ploidy levels ranging from 2 x to 7 to 8 x , but dysploidy is also present, with one diploid species, Artemisia austriaca , having x  = 8.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 203–211.  相似文献   

9.
For the large Neotropical plant family Bromeliaceae, we provide new data on chromosome numbers, cytological features and genome size estimations, and combine them with data available in the literature. Root‐tip chromosome counts for 46 species representing four subfamilies and a literature review of previously published data were carried out. Propidium iodide staining and flow cytometry were used to estimate absolute genome sizes in five subfamilies of Bromeliaceae, sampling 28 species. Most species were diploid with 2n = 50 in Bromelioideae, Puyoideae and Pitcairnioideae, followed by 2n = 48 observed mainly in Tillandsioideae. Individual chromosome sizes varied more than tenfold, with the largest chromosomes observed in Tillandsioideae and the smallest in Bromelioideae. Genome sizes (2C‐values) varied from 0.85 to 2.23 pg, with the largest genomes in Tillandsioideae. Genome evolution in Bromeliaceae relies on two main mechanisms: polyploidy and dysploidy. With the exception of Tillandsioideae, polyploidy is positively correlated with genome size. Dysploidy is suggested as the mechanism responsible for the generation of the derived chromosome numbers, such as 2n = 32/34 or 2n = 48. The occurrence of B chromosomes in the dysploid genus Cryptanthus suggests ongoing speciation processes closely associated with chromosome rearrangements. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 349–368.  相似文献   

10.
Twenty-two chromosome counts of 19 taxa (21 populations) in the tribe Anthemideae and one member (one population) of the tribe Inuleae of the family Asteraceae are reported. The Anthemideae studied belong to the subtribes Artemisiinae (14 Artemisia taxa, and one species each of the genera Dendranthema , Filifolium and Neopallasia ) and Tanacetinae (one species each of the genera Lepidolopha and Tanacetopsis ). From the Inuleae, we studied one Inula species. Five counts are new reports (including two at generic level), six are not consistent with previous counts and the remainder are confirmations of very limited (one to four records) previous data. Most of populations of Anthemideae studied have the basic chromosome number x  = 9, with ploidy levels ranging from 2 x to 10 x . Dysploidy is also present, with two x  = 8 diploid taxa. The species of Inuleae studied is a diploid with x  = 10, also indicating dysploidy, other members of the same genus Inula having basic numbers of x  = 9 or 8.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 148 , 77–85.  相似文献   

11.
A new genus, Henricksonia, containing the single species H. mexicana, has been described from a locality in north-central Mexico. It is unique among the genera of the subtribe Coreopsidinae in possessing a pappus of well-developed scales such as frequently occurs in other subtribes of the Heliantheae. The discovery of four, previously uncollected, monotypic genera among several tribes of the Asteraceae from this region over the past several years suggests that the area is a primary center of diversification for this large family.  相似文献   

12.
Chromosome counts are reported for 15 species of the family Asteraceae from Inner Mongolia (People’s Republic of China). This study includes representatives of the tribes Anthemideae (Artemisia, Chrysanthemum, Filifolium, Hippolytia and Neopallasia), Astereae (Heteropappus) and Cardueae (Echinops and Olgaea). The significance of the chromosome counts is discussed for each species. Within the Anthemideae, chromosome counts for Hippolytia alashanensis (2n?=?36) and the tetraploid level of Artemisia eriopoda (2n?=?36) are reported for the first time. The chromosome number of Heteropappus altaicus (Astereae) agrees with previous reports of one (4x) of the two ploidy levels reported for this taxon. As a complement to the karyological data, genome size of the Cardueae representatives was assessed using flow cytometry. Within this tribe, Echinops gmelini (2n?=?26) and its sister taxon E. acantholepis (2n?=?14) show strongly divergent karyological patterns of difficult interpretation, whereas the count of E. przewalskyi (2n?=?32), assigned here for the first time, coincides with those of its close relatives. In Olgaea tangutica, the chromosome count (2n?=?24) and genome size (2C?=?3.01 pg) given here are the first reports for both the species and the genus.  相似文献   

13.
Genome size variation is of fundamental biological importance and has been a longstanding puzzle in evolutionary biology. In the present study, the genome size of 61 accessions corresponding to 11 genera and 50 species of Vitaceae and Leeaceae is determined using flow cytometry. Phylogenetically based statistical analyses were used to infer ancestral character reconstructions of nuclear DNA contents. The DNA 1C‐values of 38 species are reported for the first time, with the largest genome (Cyphostemma humile (N. E. Br.) Desc. ex Wild & R. B. Drumm, 1C = 3.25 pg) roughly 10.48‐fold larger than the smallest (Vitis vulpina L., 1C = 0.31 pg). The large genomes are restricted to the tribe Cayratieae, and most other extant species in the family possess relatively small genomes. Ancestral genome size reconstruction revealed that the most recent common ancestor for the family had a relatively small genome (1C = 0.85 pg). Genome evolution in Vitaceae has been characterized by a trend towards genome size reduction, with just one episode of apparent DNA accumulation in the Cayratieae lineage. Such contrasting patterns of genome size evolution probably resulted from transposable elements and chromosome rearrangements, while neopolyploidization seems to contribute to recent genome increase in some species at the tips in the family tree.  相似文献   

14.
Based on results from phylogenetic analyses of nuclear 18S-26S rDNA internal transcribed spacer (ITS) region sequences, we suggest that the monophyletic tarweed and silversword subtribe (Madiinae) is phylogenetically nested among epaleate, x = 19 species of helenioid Heliantheae. Strong bootstrap support (100%) was obtained for a sister-group relationship between Madiinae and Arnica (including Mallotopus and Whitneya) in an analysis including representatives of recognized genera in a principally Californian clade (Madieae sensu Baldwin) identified from a phylogenetic investigation of Heliantheae s.l. (sensu lato) and Eupatorieae. In all minimum-length trees, the robust lineage comprising Madiinae and Arnica (x = 19) is part of a larger clade that also comprises Eatonella s.s. (sensu stricto), Hulsea, and Venegasia, all with x = 19. The phylogenetic position of Madiinae within a group of genera based uniformly on x = 19 leads us to conclude that the modal numbers of n = 7 and n = 8 (and other numbers, as low as n = 4) in Madiinae are the results of extreme dysploidy. Among the x = 19 "arnicoid" taxa, the near-universal characteristics of perenniality (except in the monotypic Eatonella s.s. and a minority of hulseas) and montane or high-latitudinal occurrence (except in the monotypic Venegasia) lead us to suggest that the most recent common ancestor of the tarweeds (a principally annual group of seasonally dry, low-elevation habitats) was probably a montane, herbaceous perennial resembling the unusual subalpine and alpine tarweeds constituting Raillardella s.s. (x = 17), an arnica-like genus. In Madiinae, Raillardella s.s. may be plesiomorphic in habit, capitular and ecological characteristics, and high base chromosome number. Shifts to an annual habit and to low chromosome numbers in Madiinae have been followed by subsequent episodes of polyploidy and descending dysploidy. We conclude that genome evolution in Madiinae has been marked by wide swings in chromosome number that confuse identification of diploids and polyploids.  相似文献   

15.
? Premise of the study: The development of three low-copy nuclear markers for low taxonomic level phylogenies in Asteraceae with emphasis on the subtribe Hieraciinae is reported. ? Methods and Results: Marker candidates were selected by comparing a Lactuca complementary DNA (cDNA) library with public DNA sequence databases. Interspecific variation and phylogenetic signal of the selected genes were investigated for diploid taxa from the subtribe Hieraciinae and compared to a reference phylogeny. Their ability to cross-amplify was assessed for other Asteraceae tribes. All three markers had higher variation (2.1-4.5 times) than the internal transcribed spacer (ITS) in Hieraciinae. Cross-amplification was successful in at least seven other tribes of the Asteraceae. Only three cases indicating the presence of paralogs or pseudogenes were detected. ? Conclusions: The results demonstrate the potential of these markers for phylogeny reconstruction in the Hieraciinae as well as in other Asteraceae tribes, especially for very closely related species.  相似文献   

16.
The Asteraceae are commonly divided into two large subfamilies, the Cichorioideae (syn. Lactucoideae; Mutisieae, Cardueae, Lactuceae, Vernonieae, Liabeae, Arctoteae) and the Asteroideae (Inuleae, Astereae, Anthemideae, Senecioneae, Calenduleae, Heliantheae, Eupatorieae). Recent phylogenetic analyses based on morphological and chloroplast DNA data conclusively show that the Mutisieae-Barnadesiinae are the sister group to the rest of the family and that the Asteroideae tribes form a monophyletic group. The Vernonieae and Liabeae are sister tribes and the Eupatorieae are nested within a paraphyletic Heliantheae; otherwise tribal interrelationships are still largely uncertain. The Mutisieae-Barnadesiinae are excluded from the Mutisieae and elevated to the new subfamily Barnadesioideae. The two subfamilies Barnadesioideae and Asteroideae are monophyletic, whereas the status of the Cichorioideae remains uncertain. Analyses of chloroplast DNA data support the monophyly of the Cichorioideae; however, morphological data indicate that the subfamily is paraphyletic. Further studies are needed to test the monophyly of the Cichorioideae, as well as to further resolve tribal interrelationships in the two larger subfamilies.  相似文献   

17.
Calendula L. (Asteraceae) is a taxonomically and cytologically complex genus due to its high morphological and karyological variation. To gather consistent cytological information aiming to consolidate the existing knowledge, sustain the taxonomic revision of the genus and explore the evolutionary relationships among species, the genome size and chromosome number of the Iberian Peninsula representatives of this genus were assessed. The study included 11 taxa that occur in the Iberian Peninsula, one in Madeira and two from Morocco. Chromosome counts were made using the squash technique in root tips and flower buds, while nuclear DNA contents were assessed using propidium iodide flow cytometry. The following chromosome numbers are reported: 2n = 44 for C. arvensis, 2n = 30 for C. tripterocarpa, and 2n = 32 for the remaining Iberian taxa. The genome size of Calendula species was assessed for the first time and ranged from 1.75 pg/2C in C. maroccana to 5.41 pg/2C in C. arvensis. Within the complex formed by C. incana and C. suffruticosa, a gradient of genome size values was obtained. Intraspecific variation in genome size was detected in some taxa. The obtained genome size values and their variation are discussed in the light of the theories proposed for the speciation of the genus, with events of hybridization, genome duplication and dysploidy being hypothesized to play a major role in the evolution of this genus.  相似文献   

18.
Passiflora L. has more than 575 species distributed especially in the Neotropics. The chromosome number variation in the genus is highly congruent with its main subgenera, but its basic chromosome number (x) and the underlying events responsible for this variation have remained controversial. Here, we provide a robust and well-resolved time-calibrated phylogeny that includes 102 taxa, and by means of phylogenetic comparative methods (PCM) we tested the relative importance of polyploidy and dysploidy events to Passiflora karyotype evolution and diversification. Passiflora arose 42.9 Mya, with subgenus diversification at the end of the Palaeogene (Eocene-Oligocene). The basic chromosome number of the genus is proposed as x?=?6, and a strong recent diversification found in the Passiflora subgenus (Miocene) correlated to genome size increase and a chromosome change from n?=?6 to n?=?9 by ascending dysploidy. Polyploidy, conversely, appeared restricted to few lineages, such as Astrophea and Deidamioides subgenera, and did not lead to diversification increases. Our findings suggest that ascending dysploidy provided a great advantage for generating long-term persistent lineages and promoting species diversification. Thus, chromosome numbers/genome size changes may have contributed to morphological/ecological traits that explain the pattern of diversification observed in the genus Passiflora.  相似文献   

19.
The chromosome numbers in Dahlia (Asteraceae, Heliantheae) are surveyed, and counts made on species grown in the Botanic Garden, University of Copenhagen, are given. Next a biosystematic study of species within Dahlia sect. Dahlia is presented. It is concluded that taxa with the same chromosome number can be brought to hybridize without specific barriers (some diploids possibly excepted). Based on this conclusion, it is demonstrated that the original European introduction of dahlias from Mexico consisted of two tetraploid (2n = 64) hybrids and a native, diploid (2n = 32) D. coccinea with scarlet rays. One of the hybrids was named D. pinnara which designation is consequently not applicable for the native species, currently known under that name. Instead, the new designation D. sorensenii is formally established. The other hybrid, D. rosea , is a synonym of D. pinnara .  相似文献   

20.
The Brassicaceae is an economically and scientifically important family distributed globally, including oilseed rape and the model plant, Arabidopsis thaliana. Although growing molecular data have been used in phylogenetic studies, the relationships among major clades and tribes of Brassicaceae are still controversial. Here, we investigated the core Brassicaceae phylogenetics using 222 plastomes and 235 nrDNA cistrons, including 106 plastomes and 112 nrDNA cistrons assembled from newly sequenced genome skimming data of 112 taxa. The sampling covered 73 genera from 61.5% tribes and four unassigned genera and species. Three well supported lineages LI, LII, and LIII were revealed in our plastomic analyses, with LI sister to LII + LIII. In addition, the monophyly of the newly delimitated LII was strongly supported by three different partition strategies, concatenated methods under Bayesian and Maximum Likelihood analyses. LII comprised 13 tribes, including four tribes previously unassigned to any lineage, that is Biscutelleae as the earliest diverging clade and Cochlearieae as the sister to Megacarpaeeae + Anastaticeae. Within LII, the intertribal relationships were also well resolved, except that a conflicting position of Orychophragmus was detected among different datasets. In LIII, Shehbazia was resolved as a member of Chorisproreae, but Chorisproreae, Dontostemoneae, and Euclidieae were all resolved as paraphyletic, which was also confirmed by nrDNA analyses. Moreover, the loss of the rps16 gene was detected as likely to be a synapomorphy of the tribes Arabideae and Alysseae. Overall, using genome skimming data, we resolved robust phylogenetic relationships of core Brassicaceae and shed new light on the complex evolutionary history of this family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号